login
A280427
a(n) is a prime, such that a(n) = p^d-2 where p is a prime and d is the number of digits of p.
1
3, 5, 167, 359, 839, 1367, 1847, 2207, 3719, 5039, 7919, 1295027, 3442949, 9393929, 13997519, 21253931, 49430861, 84604517, 95443991, 237176657, 329939369, 384240581, 487443401, 633839777, 904231061, 1078193566319, 1427186233199, 1556727840719, 1985193642959
OFFSET
1,1
COMMENTS
These numbers (proved for all p < 500) are a subset of A007528. For all even p, such numbers are a subset of A007528. The sequence is a subset of all numbers f(i) such that f(i) = i^d-2 (d - number of digits of integer i) and f(i) is a prime: e.g., f(15) is prime while f(15) = 15^2-2 = 223.
FORMULA
a(n) = p^d-2, a(n) is prime, p is a prime and d is the number of digits of p.
EXAMPLE
If p=5, then d=1 and a(1)=3; if p=7, then d=1 and a(2)=5; if p=13, then d=2 and a(3)=167; etc.
MATHEMATICA
Select[Array[#^IntegerLength@ # - 2 &@ Prime@ # &, 200], PrimeQ] (* Michael De Vlieger, Jan 03 2017 *)
CROSSREFS
Cf. A007528.
Sequence in context: A372746 A108013 A087307 * A038535 A090953 A092947
KEYWORD
nonn,base
AUTHOR
Sergey Pavlov, Jan 02 2017
EXTENSIONS
More terms from Michael De Vlieger, Jan 03 2017
STATUS
approved