login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A280240
Expansion of 1/(1 - Sum_{k>=1} x^(k+floor(1/2+sqrt(k)))).
0
1, 0, 1, 1, 1, 3, 3, 6, 9, 12, 22, 30, 49, 76, 113, 181, 271, 423, 653, 998, 1553, 2378, 3674, 5667, 8715, 13463, 20721, 31952, 49261, 75883, 117022, 180310, 277937, 428422, 660239, 1017760, 1568577, 2417700, 3726514, 5743524, 8852817, 13644751, 21030859, 32415319, 49961707, 77007095, 118691597
OFFSET
0,6
COMMENTS
Number of compositions (ordered partitions) into nonsquares (A000037).
FORMULA
G.f.: 1/(1 - Sum_{k>=1} x^(k+floor(1/2+sqrt(k)))).
EXAMPLE
a(5) = 3 because we have [2, 3], [3, 2] and [5].
MATHEMATICA
nmax = 46; CoefficientList[Series[1/(1 - Sum[x^(k + Floor[1/2 + Sqrt[k]]), {k, 1, nmax}]), {x, 0, nmax}], x]
CROSSREFS
Sequence in context: A128012 A289143 A323451 * A058628 A035528 A341241
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Dec 29 2016
STATUS
approved