login
a(n) = floor( exp(gamma) k log log k ) - sigma(k), where gamma is Euler's constant (A001620) and sigma(k) is sum of divisors of k (A000203), the n-th colossally abundant number (A004490).
0

%I #21 Dec 29 2016 03:55:23

%S -5,-6,-9,-18,-26,-34,-123,-107,3953,90021,203866,678250,3860926,

%T 62168609,1022130830,22777519100,46323907000,1499885420000,

%U 47625567000000,318447820000000,974228630000000,36070436000000000

%N a(n) = floor( exp(gamma) k log log k ) - sigma(k), where gamma is Euler's constant (A001620) and sigma(k) is sum of divisors of k (A000203), the n-th colossally abundant number (A004490).

%C By Robin's theorem, if the Riemann hypothesis is true the only negative values this sequence attains are the first eight terms; if it is false, it becomes negative again somewhere farther on. Briggs conjectured, in effect, that this sequence is asymptotic to C k / sqrt(log(k)) for some constant C.

%D G. Robin, Grandes valeurs de la fonction somme des diviseurs et hypothese de Riemann, J. Math. Pures Appl. 63 (1984), 187-213.

%H Keith Briggs, <a href="https://projecteuclid.org/euclid.em/1175789744">Abundant numbers and the Riemann Hypothesis</a>, Experimental Math., Vol. 16 (2006), p. 251-256.

%Y Cf. A004490, A058209.

%K sign

%O 2,1

%A _Gene Ward Smith_, Dec 17 2016