The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279536 Count the squarefree numbers appearing in each interval [p,q] where (p,q) is a Goldbach partition of 2n such that all primes from p to q (inclusive) appear as a part in some Goldbach partition of p+q = 2n, and then add the results. 3
 0, 0, 1, 2, 5, 3, 1, 0, 9, 0, 1, 19, 1, 0, 21, 0, 1, 10, 1, 0, 4, 0, 1, 0, 0, 3, 0, 0, 1, 68, 1, 0, 0, 5, 0, 0, 1, 0, 4, 0, 1, 25, 1, 0, 3, 0, 1, 0, 0, 3, 0, 0, 8, 0, 0, 5, 0, 0, 1, 12, 1, 0, 0, 5, 0, 0, 1, 0, 4, 0, 1, 2, 1, 0, 0, 5, 0, 0, 1, 0, 14, 0, 1, 0, 0, 5, 0, 0, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS a(n) >= A279315(n). - Wesley Ivan Hurt, Dec 17 2016 LINKS Eric Weisstein's World of Mathematics, Goldbach Partition Wikipedia, Goldbach's conjecture FORMULA a(n) = Sum_{i=3..n} (A010051(i) * A010051(2n-i) * (Sum_{j=i..2n-i} mu(j)^2) * (Product_{k=i..n} (1-abs(A010051(k)-A010051(2n-k))))), where mu is the Möbius function (A008683). MAPLE with(numtheory): A279536:=n->add( (pi(i)-pi(i-1)) * (pi(2*n-i)-pi(2*n-i-1)) * add(mobius(j)^2, j=i..2*n-i) * (product(1-abs((pi(k)-pi(k-1))-(pi(2*n-k)-pi(2*n-k-1))), k=i..n)), i=3..n): seq(A279536(n), n=1..100); CROSSREFS Cf. A008683, A010051, A279315. Sequence in context: A102892 A132898 A265318 * A269954 A326953 A234255 Adjacent sequences:  A279533 A279534 A279535 * A279537 A279538 A279539 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Dec 14 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 00:37 EDT 2021. Contains 345125 sequences. (Running on oeis4.)