|
|
A279432
|
|
Triangle read by rows: T(n,k), n>=k>=1, is the number of triangles with integer coordinates that have a bounding box of size n X k.
|
|
8
|
|
|
0, 0, 4, 0, 10, 20, 0, 16, 34, 48, 0, 22, 44, 70, 88, 0, 28, 58, 88, 118, 140, 0, 34, 68, 102, 140, 178, 204, 0, 40, 82, 124, 166, 208, 250, 280, 0, 46, 92, 142, 184, 238, 284, 334, 368, 0, 52, 106, 156, 214, 268, 318, 376, 430, 468, 0, 58, 116, 178, 236, 290
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
T(n,k) = A279433(n,k) + A280652(n,k) + A280653(n,k).
It appears that the main diagonal is 4*A000326.
|
|
LINKS
|
Lars Blomberg, Table of n, a(n) for n = 1..9870 (the first 140 rows)
|
|
EXAMPLE
|
Triangle begins:
0
0,4
0,10,20
0,16,34,48
0,22,44,70,88
0,28,58,88,118,140
0,34,68,102,140,178,204
0,40,82,124,166,208,250,280
0,46,92,142,184,238,284,334,368
0,52,106,156,214,268,318,376,430,468
0,58,116,178,236,290,356,418,476,538,580
0,64,130,196,262,328,394,460,526,592,658,704
-----
A right angle is marked 'r', an obtuse one 'o'.
For n=2, k=2
rx xr x. .x
x. .x rx xr
So T(2,2)=4.
-----
For n=3, k=2
xo. r.x x.x x.r x.. x.. .ox .r. ..x ..x
..x x.. .r. ..x r.x .ox x.. x.x xo. x.r
So T(3,2)=10.
|
|
CROSSREFS
|
Cf. A045996.
See A279415 for right isosceles triangles.
See A280639 for obtuse isosceles triangles.
See A279418 for acute isosceles triangles.
See A279413 for all isosceles triangles.
See A279433 for all right triangles.
See A280652 for all obtuse triangles.
See A280653 for all acute triangles.
Sequence in context: A158976 A211243 A181626 * A019127 A019207 A298449
Adjacent sequences: A279429 A279430 A279431 * A279433 A279434 A279435
|
|
KEYWORD
|
nonn,tabl
|
|
AUTHOR
|
Lars Blomberg, Feb 27 2017
|
|
STATUS
|
approved
|
|
|
|