login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279369
A mapping of rationals a/b (lowest form) to prime rationals p/q such that a/b = (p+1)/(q+1), where n (the sequence index) selects the rationals a/b from the triangle array A226314(n)/A054531(n) and a(n) selects the prime rationals p/q from the same array.
0
1, 12, 18, 58, 13, 74, 57, 19, 5, 72, 174, 178, 182, 429, 217, 138, 8, 225, 247, 272, 162, 825, 81, 83, 85, 849, 89, 999, 255, 1047, 23, 110, 484, 103, 1122, 288, 1383, 139, 114, 143, 1407, 32, 149, 1425, 1518, 408, 711, 176, 1677, 165, 727, 184, 1701, 188, 450, 906, 910, 914
OFFSET
1,2
COMMENTS
Rationals a/b (lowest form) can be mapped 1-to-1 to a positive integer n where a/b is the n-th term of the triangular array A226314(n)/A054531(n). Consider two function of x, f_1 = ax-1 and f_2 = bx-1. Then by Schinzel's Hypothesis H there are infinite values of x such that f_1 and f_2 are simultaneously prime allowing a/b to be expressed using two primes p and q as a/b=(p+1)/(q+1).
By choosing the least x for generating p=f_1 and q=f_2 (see A278635) it is possible to find a unique prime rational p/q that maps to rational a/b. If n is the sequence index that selects the rational a/b from the triangular array A226314(n)/A054531(n), then a(n) selects the prime rationals p/q from the same array.
LINKS
Lance Fortnow, Counting the Rationals Quickly, Computational Complexity Weblog, Monday, March 01, 2004.
A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica IV., 1957.
EXAMPLE
a(7)=57 because A226314(7)/A054531(7)=1/4 and with least x=3 we have p=f_1=x-1=2 and q=f_2=4x-1=11. Therefore (p+1)/(q+1)=3/12=1/4. Also A226314(57)/A054531(57)=p/q=2/11.
MATHEMATICA
func[{i_, j_}] := {j(j-1)/2+i->{j+(i-j)/GCD[i, j], j/GCD[i, j]}}; rfunc[{i_, j_}] := {{j+(i-j)/GCD[i, j], j/GCD[i, j]}->j(j-1)/2+i}; getx[{a_, b_}] := Module[{f1, f2, x}, If[a==b, {1, 1}, (f1=a*x-1; f2=b*x-1; x=1; While[(!PrimeQ[f1]||!PrimeQ[f2])&&x<10^5, x++]; If[x==10^5, Abort[], {f1, f2}])]]; assoc=Association@Flatten[Table[func[{a, b}], {b, 1000}, {a, b}], 1]; rassoc=Association@Flatten[Table[rfunc[{a, b}], {b, 1000}, {a, b}], 1]; Table[rassoc[getx[assoc[n]]], {n, 1, 100}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Frank M Jackson and Michael B Rees, Dec 10 2016
STATUS
approved