login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Length of second run of 1's in binary representation of Catalan(n).
2

%I #16 Aug 20 2021 13:38:43

%S 0,0,0,1,0,1,1,1,2,1,2,1,1,2,1,1,2,3,4,1,3,2,1,6,1,2,1,4,7,5,2,3,1,4,

%T 2,1,1,5,2,1,3,1,1,3,3,3,3,8,2,1,2,2,1,3,2,2,1,1,1,1,3,2,1,1,2,1,4,1,

%U 2,4,1,2,3,1,1,1,2,1,1,5,1,1,1,5,4,3,2,2,2,1,1,1,1,1,1,3,2,2,1,1

%N Length of second run of 1's in binary representation of Catalan(n).

%C Suggested by A279026.

%C What combinatorial problem is this the answer to?

%H Chai Wah Wu, <a href="/A279205/b279205.txt">Table of n, a(n) for n = 0..10000</a>

%e A000108(13) = 742900_10 = A264663(13) = 10110101010111110100_2, so a(13) = 2.

%t Q = {};

%t Num = 100;

%t T = Table[IntegerDigits[CatalanNumber[n], 2], {n, 0, Num}];

%t For[i = 1, i <= Num, i++,

%t c = 0; j = 1;

%t While[T[[i]][[j]] == 1, j++];

%t While[T[[i]][[j]] == 0, j++];

%t c = j;

%t While[T[[i]][[j]] == 1, j++];

%t c = j - c;

%t AppendTo[Q, c]

%t ];

%t Q (* _Benedict W. J. Irwin_, Dec 21 2016 *)

%t Join[{0,0,0,1,0},Length[Split[IntegerDigits[#,2]][[3]]]&/@ CatalanNumber[ Range[5,100]]] (* _Harvey P. Dale_, Aug 20 2021 *)

%Y Cf. A000108, A264663, A279026, A279206.

%K nonn,base

%O 0,9

%A _N. J. A. Sloane_, Dec 21 2016

%E a(19) to a(99) from _Benedict W. J. Irwin_, Dec 21 2016