The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279205 Length of second run of 1's in binary representation of Catalan(n). 2
 0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 4, 1, 3, 2, 1, 6, 1, 2, 1, 4, 7, 5, 2, 3, 1, 4, 2, 1, 1, 5, 2, 1, 3, 1, 1, 3, 3, 3, 3, 8, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 4, 1, 2, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,9 COMMENTS Suggested by A279026. What combinatorial problem is this the answer to? LINKS Chai Wah Wu, Table of n, a(n) for n = 0..10000 EXAMPLE A000108(13) = 742900_10 = A264663(13) = 10110101010111110100_2, so a(13) = 2. MATHEMATICA Q = {}; Num = 100; T = Table[IntegerDigits[CatalanNumber[n], 2], {n, 0, Num}]; For[i = 1, i <= Num, i++, c = 0; j = 1; While[T[[i]][[j]] == 1, j++]; While[T[[i]][[j]] == 0, j++]; c = j; While[T[[i]][[j]] == 1, j++]; c = j - c; AppendTo[Q, c] ]; Q (* Benedict W. J. Irwin, Dec 21 2016 *) Join[{0, 0, 0, 1, 0}, Length[Split[IntegerDigits[#, 2]][[3]]]&/@ CatalanNumber[ Range[5, 100]]] (* Harvey P. Dale, Aug 20 2021 *) CROSSREFS Cf. A000108, A264663, A279026, A279206. Sequence in context: A022300 A347552 A300983 * A105690 A214364 A175922 Adjacent sequences: A279202 A279203 A279204 * A279206 A279207 A279208 KEYWORD nonn,base AUTHOR N. J. A. Sloane, Dec 21 2016 EXTENSIONS a(19) to a(99) from Benedict W. J. Irwin, Dec 21 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 22 00:58 EDT 2024. Contains 374478 sequences. (Running on oeis4.)