login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279205
Length of second run of 1's in binary representation of Catalan(n).
2
0, 0, 0, 1, 0, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 3, 4, 1, 3, 2, 1, 6, 1, 2, 1, 4, 7, 5, 2, 3, 1, 4, 2, 1, 1, 5, 2, 1, 3, 1, 1, 3, 3, 3, 3, 8, 2, 1, 2, 2, 1, 3, 2, 2, 1, 1, 1, 1, 3, 2, 1, 1, 2, 1, 4, 1, 2, 4, 1, 2, 3, 1, 1, 1, 2, 1, 1, 5, 1, 1, 1, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 3, 2, 2, 1, 1
OFFSET
0,9
COMMENTS
Suggested by A279026.
What combinatorial problem is this the answer to?
EXAMPLE
A000108(13) = 742900_10 = A264663(13) = 10110101010111110100_2, so a(13) = 2.
MATHEMATICA
Q = {};
Num = 100;
T = Table[IntegerDigits[CatalanNumber[n], 2], {n, 0, Num}];
For[i = 1, i <= Num, i++,
c = 0; j = 1;
While[T[[i]][[j]] == 1, j++];
While[T[[i]][[j]] == 0, j++];
c = j;
While[T[[i]][[j]] == 1, j++];
c = j - c;
AppendTo[Q, c]
];
Q (* Benedict W. J. Irwin, Dec 21 2016 *)
Join[{0, 0, 0, 1, 0}, Length[Split[IntegerDigits[#, 2]][[3]]]&/@ CatalanNumber[ Range[5, 100]]] (* Harvey P. Dale, Aug 20 2021 *)
CROSSREFS
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Dec 21 2016
EXTENSIONS
a(19) to a(99) from Benedict W. J. Irwin, Dec 21 2016
STATUS
approved