|
|
A279163
|
|
Number of nX3 0..1 arrays with no element equal to a strict majority of its king-move neighbors, with the exception of exactly two elements, and with new values introduced in order 0 sequentially upwards.
|
|
1
|
|
|
0, 0, 16, 117, 483, 2001, 7709, 28139, 99519, 343156, 1158512, 3846322, 12594188, 40751991, 130532891, 414450312, 1305793262, 4086143226, 12709088120, 39314219923, 121018445801, 370868139707, 1131946765331, 3442082089719
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,3
|
|
COMMENTS
|
Column 3 of A279168.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 12*a(n-1) -60*a(n-2) +178*a(n-3) -423*a(n-4) +945*a(n-5) -1762*a(n-6) +2718*a(n-7) -4107*a(n-8) +5541*a(n-9) -6003*a(n-10) +6900*a(n-11) -7369*a(n-12) +5673*a(n-13) -6435*a(n-14) +6357*a(n-15) -3486*a(n-16) +5577*a(n-17) -3953*a(n-18) +453*a(n-19) -3432*a(n-20) +780*a(n-21) +357*a(n-22) +2541*a(n-23) +430*a(n-24) -354*a(n-25) -888*a(n-26) -583*a(n-27) -84*a(n-28) +354*a(n-29) +224*a(n-30) -36*a(n-31) -48*a(n-32) -8*a(n-33) for n>36
|
|
EXAMPLE
|
Some solutions for n=4
..0..1..0. .0..0..1. .0..1..0. .0..1..1. .0..1..1. .0..1..0. .0..1..0
..1..1..0. .1..1..1. .0..1..0. .1..0..0. .0..1..0. .0..0..1. .1..1..1
..1..0..1. .0..0..0. .1..1..1. .1..0..0. .0..1..0. .1..1..1. .0..0..0
..0..0..1. .1..0..1. .0..0..1. .0..1..1. .0..1..1. .0..0..0. .1..0..1
|
|
CROSSREFS
|
Cf. A279168.
Sequence in context: A044348 A044729 A251423 * A101377 A302897 A145216
Adjacent sequences: A279160 A279161 A279162 * A279164 A279165 A279166
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Dec 07 2016
|
|
STATUS
|
approved
|
|
|
|