login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279088
Numbers k for which sigma(k) - 3k exceeds sigma(j) - 3j for all j < k.
2
1, 120, 180, 240, 360, 720, 840, 1260, 1440, 1680, 2160, 2520, 3360, 3780, 3960, 4200, 4680, 5040, 7560, 9240, 10080, 12600, 13860, 15120, 18480, 20160, 22680, 25200, 27720, 30240, 32760, 36960, 37800, 40320, 42840, 45360, 50400, 55440, 65520, 75600, 83160
OFFSET
1,2
COMMENTS
Positions of record lows in A033885. - Robert Israel, Jan 30 2017
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..350 (terms 1..125 from Robert Israel)
EXAMPLE
240 is in the sequence because sigma(240) - 3*240 = 744 - 720 = 24, and no k < 240 has a value of sigma(k) - 3k this large.
MAPLE
m:= numtheory:-sigma(1) - 3:
count:= 1:
A[1]:= 1:
for n from 2 to 10^6 do
v:= numtheory:-sigma(n)-3*n;
if v > m then
count:= count+1;
A[count]:= n;
m:= v;
fi;
od:
seq(A[i], i=1..count); # Robert Israel, Jan 30 2017
MATHEMATICA
With[{s = Array[DivisorSigma[1, #] - 3 # &, 10^5]}, FirstPosition[s, #][[1]] & /@ Union@ FoldList[Max, s]] (* Michael De Vlieger, Dec 16 2017 *)
PROG
(PARI) isok(k) = {my(x = sigma(k) - 3*k); for (j=1, k-1, if (sigma(j) - 3*j > x, return (0)); ); 1; } \\ Michel Marcus, Jan 30 2017
(MATLAB)
N = 10^6; % to get all terms <= N
V = 1-3*[1:N];
m = V(1);
A(1) = 1;
for n=2:N
V(n*[1:N/n]) = V(n*[1:N/n]) + n;
if V(n) > m
m = V(n);
A(end+1) = n;
end
end
A % Robert Israel, Jan 30 2017
CROSSREFS
Cf. A002093 (d=0), A034090 (d=1), and A140522 (d=2).
Cf. A033885.
Sequence in context: A023197 A204828 A204830 * A337479 A322377 A247851
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Jan 29 2017
EXTENSIONS
Duplicate a(2)-a(43) removed from b-file by Andrew Howroyd, Feb 27 2018
STATUS
approved