login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A279080
Maximum starting value of X such that repeated replacement of X with X-ceiling(X/10) requires n steps to reach 0.
6
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 13, 15, 17, 19, 22, 25, 28, 32, 36, 41, 46, 52, 58, 65, 73, 82, 92, 103, 115, 128, 143, 159, 177, 197, 219, 244, 272, 303, 337, 375, 417, 464, 516, 574, 638, 709, 788, 876, 974, 1083, 1204, 1338, 1487, 1653, 1837, 2042, 2269
OFFSET
0,3
COMMENTS
Inspired by A278586.
Limit_{n->oo} a(n)/(10/9)^n = 5.60655601136196116133057876294687807265035051745268...
LINKS
FORMULA
a(n) = floor(a(n-1)*10/9) + 1.
EXAMPLE
13 -> 13-ceiling(13/10) = 11,
11 -> 11-ceiling(11/10) = 9,
9 -> 9-ceiling(9/10) = 8,
8 -> 8-ceiling(8/10) = 7,
...
1 -> 1-ceiling(1/10) = 0,
so reaching 0 from 13 requires 11 steps;
14 -> 14-ceiling(14/10) = 12,
12 -> 12-ceiling(12/10) = 10,
10 -> 10-ceiling(10/10) = 9,
9 -> 9-ceiling(9/10) = 8,
8 -> 8-ceiling(8/10) = 7,
...
1 -> 1-ceiling(1/10) = 0,
so reaching 0 from 14 (or more) requires 12 (or more) steps;
thus, 13 is the largest starting value from which 0 can be reached in 11 steps, so a(11) = 13.
MAPLE
H:= proc(y) local u, v;
v:= -y-1 mod 9+1;
(10*y+v)/9
end proc:
A:= Array(0..100):
A[0]:= 0:
for i from 1 to 100 do A[i]:= H(A[i-1]) od:
convert(A, list); # Robert Israel, Jun 23 2020
MATHEMATICA
With[{s = Array[-1 + Length@ NestWhileList[# - Ceiling[#/10] &, #, # > 0 &] &, 2400, 0]}, Array[-1 + Position[s, #][[-1, 1]] &, Max@ s, 0]] (* Michael De Vlieger, Jun 23 2020 *)
PROG
(Magma) a:=[0]; aCurr:=0; for n in [1..57] do aCurr:=Floor(aCurr*10/9)+1; a[#a+1]:=aCurr; end for; a;
CROSSREFS
Cf. A278586.
See the following sequences for maximum starting value of X such that repeated replacement of X with X-ceiling(X/k) requires n steps to reach 0: A000225 (k=2), A006999 (k=3), A155167 (k=4, apparently; see Formula entry there), A279075 (k=5), A279076 (k=6), A279077 (k=7), A279078 (k=8), A279079 (k=9), (this sequence) (k=10). For each of these values of k, is the sequence the L-sieve transform of {k-1, 2k-1, 3k-1, ...}?
Sequence in context: A008727 A357745 A088450 * A108641 A366944 A289351
KEYWORD
nonn
AUTHOR
Jon E. Schoenfield, Dec 06 2016
STATUS
approved