

A278976


In the ternary Pi race between digits one and two, where the race leader changes.


4



1, 216, 334, 349, 351, 426, 434, 576, 591, 632, 636, 638, 649, 656, 660, 665, 764, 771, 936, 939, 953, 1125, 1127, 1165, 1168, 1198, 190780, 190793, 190797, 190870, 190880, 191094
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Hans Havermann, Table of n, a(n) for n = 1..10000


EXAMPLE

Ternary Pi is 10.01021101222201021100211...
With no digits of ternary Pi, there are an equal number of ones and twos. 1 is in the sequence because with the initial digit of ternary Pi, 1 has now taken the count lead over 2 (10). 216 is the next term because with 216 initial digits of ternary Pi, 2 has now taken the count lead over 1 (7574). 334 is the next term because with 334 initial digits, 1 regains the count lead over 2 (119118).


MATHEMATICA

pib = RealDigits[Pi, 3, 5000000][[1]]; flag = 1; z = o = t = 0; k = 1; lst = {}; While[k < 5000001, Switch[ pib[[k]], 0, z++, 1, o++, 2, t++]; If[(o > t && flag != 1)  (o < t && flag != 1), AppendTo[lst, k]; flag = flag]; k++]; lst


CROSSREFS

Cf. A004602, A278920, A278974, A278975, A278979.
Sequence in context: A205191 A204650 A115430 * A179419 A224549 A339245
Adjacent sequences: A278973 A278974 A278975 * A278977 A278978 A278979


KEYWORD

nonn,base


AUTHOR

Hans Havermann and Robert G. Wilson v, Dec 03 2016


STATUS

approved



