The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A278903 Second series of Hankel determinants based on Bell numbers of argument k^2, Bell(k^2). 1
 1, 1, 20922, 96938760190744854628604, 1039473181175725249030299777705981025900981837012416973957739853576960 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS If we regard Bell(k^2) as the k-th Stieltjes moment for k>=0, then the solution of the Stieltjes moment problem is given in the P. Blasiak et al. reference, see below. We conjecture that a(n)>0 for n>=0. The positivity of these Hankel determinants a(n), n>=0 is one of the conditions for the existence of a positive solution. Apparently this solution is not unique. LINKS Table of n, a(n) for n=0..4. P. Blasiak, K. A. Penson and A. I. Solomon, Dobinsky-type relations and the log-normal distribution, J. Phys. A: Math. Gen. 36, L273 (2003), arXiv: quant-ph/0303030, 2003. MAPLE with(LinearAlgebra), with(combinat): h21:=(i, j)->bell((i+j-1)^2): seq(Determinant(Matrix(kk, kk, h21)), kk=0..6); MATHEMATICA Table[Det[Table[BellB[(i + j - 1)^2], {i, n}, {j, n}]], {n, 5}], n=>1. CROSSREFS Cf. A000110, A277829, A278770, A278868, A278860, A278897. Sequence in context: A031813 A043654 A188104 * A233649 A262668 A344354 Adjacent sequences: A278900 A278901 A278902 * A278904 A278905 A278906 KEYWORD nonn AUTHOR Karol A. Penson, Nov 30 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 29 22:39 EDT 2023. Contains 363044 sequences. (Running on oeis4.)