OFFSET
0,3
COMMENTS
If we regard Bell(k^2) as the k-th Stieltjes moment for k>=0, then the solution of the Stieltjes moment problem is given in the P. Blasiak et al. reference, see below. We conjecture that a(n)>0 for n>=0. The positivity of these Hankel determinants a(n), n>=0 is one of the conditions for the existence of a positive solution. Apparently this solution is not unique.
LINKS
P. Blasiak, K. A. Penson and A. I. Solomon, Dobinsky-type relations and the log-normal distribution, J. Phys. A: Math. Gen. 36, L273 (2003), arXiv: quant-ph/0303030, 2003.
MAPLE
with(LinearAlgebra), with(combinat):
h21:=(i, j)->bell((i+j-1)^2):
seq(Determinant(Matrix(kk, kk, h21)), kk=0..6);
MATHEMATICA
Table[Det[Table[BellB[(i + j - 1)^2], {i, n}, {j, n}]], {n, 5}], n=>1.
CROSSREFS
KEYWORD
nonn
AUTHOR
Karol A. Penson, Nov 30 2016
STATUS
approved