login
A278704
Number of triangles in all simple labeled graphs on n nodes.
2
1, 32, 1280, 81920, 9175040, 1879048192, 721554505728, 527765581332480, 743093938516131840, 2029141848108050677760, 10804774512805748248936448, 112652543574969605015820304384, 2307124092415377510723999833784320, 93045959704944111103266494219624120320
OFFSET
3,2
FORMULA
a(n) = binomial(n,3)*2^(binomial(n,2)-3).
a(n) = binomial(n,3)*(2^(n-3))^3*2^binomial(n-3,2). Geoffrey Critzer, Apr 13 2017
E.g.f.: x^3/3!*A(8x) where A(x) is the e.g.f. for A006125. Geoffrey Critzer, Apr 13 2017
MAPLE
A278704:=n->binomial(n, 3)*2^(binomial(n, 2)-3): seq(A278704(n), n=3..20); # Wesley Ivan Hurt, Jan 21 2017
MATHEMATICA
Table[Binomial[n, 3] 2^(Binomial[n, 2] - 3), {n, 0, 15}]
PROG
(Magma) [Binomial(n, 3)*2^(Binomial(n, 2)-3): n in [3..20]]; // Vincenzo Librandi, Nov 27 2016
CROSSREFS
Sequence in context: A247998 A208707 A038096 * A275141 A275036 A274732
KEYWORD
nonn,easy
AUTHOR
Geoffrey Critzer, Nov 26 2016
STATUS
approved