login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278676
T(n,k)=Number of nXk 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly one mistake.
8
0, 1, 1, 4, 8, 4, 10, 33, 33, 10, 20, 99, 158, 99, 20, 35, 245, 579, 579, 245, 35, 56, 532, 1801, 2650, 1801, 532, 56, 84, 1050, 4999, 10584, 10584, 4999, 1050, 84, 120, 1926, 12727, 38848, 55854, 38848, 12727, 1926, 120, 165, 3333, 30218, 134265, 280616
OFFSET
1,4
COMMENTS
Table starts
...0....1......4......10........20.........35...........56.............84
...1....8.....33......99.......245........532.........1050...........1926
...4...33....158.....579......1801.......4999........12727..........30218
..10...99....579....2650.....10584......38848.......134265.........441349
..20..245...1801...10584.....55854.....280616......1378241........6654535
..35..532...4999...38848....280616....1998526.....14437336......106388729
..56.1050..12727..134265...1378241...14437336....157706284.....1809189550
..84.1926..30218..441349...6654535..106388729...1809189550....32788533228
.120.3333..67651.1384443..31404174..791018703..21622163723...632621335872
.165.5500.143936.4148373.143558071.5827280865.263667893290.12823358704308
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = (1/6)*n^3 - (1/6)*n
k=2: [polynomial of degree 6]
k=3: [polynomial of degree 11]
k=4: [polynomial of degree 20]
k=5: [polynomial of degree 37]
k=6: [polynomial of degree 70]
EXAMPLE
Some solutions for n=4 k=4
..0..0..1..0. .0..1..0..0. .1..1..0..0. .0..0..1..0. .0..0..0..0
..1..0..1..1. .0..1..1..0. .0..0..0..0. .1..1..0..0. .0..1..1..0
..1..1..0..1. .1..0..0..1. .0..0..1..0. .1..1..1..0. .0..1..1..1
..1..1..1..1. .1..0..1..1. .1..0..1..1. .1..1..1..1. .1..1..1..0
CROSSREFS
Column 1 is A000292(n-1).
Sequence in context: A141402 A276619 A145900 * A010298 A196177 A377397
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 25 2016
STATUS
approved