login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A145900
Coefficients of a normalized Schwarzian derivative generating the Neretin polynomials: S(f) = (x^2/6) { D^2 log(f(x)) - (1/2) [D log(f(x))]^2 }.
1
1, -1, 4, -8, 4, 10, -20, -12, 34, -12, 20, -40, -52, 72, 84, -116, 32, 35, -70, -95, -52, 130, 328, 63, -224, -387, 352, -80, 56, -112, -156, -180, 212, 560, 304, 348, -380, -1416, -540, 640, 1464, -992, 192
OFFSET
2,3
COMMENTS
The array contains the coefficients for a normalized Schwarzian: Schw(g(x)) = S(f) = (x^2/6) { D^2 log(f(x)) - (1/2) [D log(f(x))]^2} with f(x)= g'(x) = 1 / [1 - c(.) x]^2 = 1 + 2 c(1) x + 3 c(2) x^2 + ....
S(f(x)) = P(2,c) x^2 + P(3,c) x^3 + P(4,c) x^4 + ..., where P(n,c) are the Neretin polynomials with an additional factor of 2.
For proof of integrality of coefficients see MathOverflow link.
Coefficients of P(n,c) sum to zero. - Tom Copeland, Jan 29 2012
REFERENCES
H. Airault, "Symmetric sums associated to the factorization of Grunsky coefficients," in Groups and Symmetries: From Neolithic Scots to John McKay, CRM Proceedings and Lecture Notes: Vol. 47, edited by J. Harnad and P. Winternitz, American Mathematical Society, p. 5, 2009.
B. Gustaffson and A. Vasil'ev, Conformal and Potential Analysis in Hele-Shaw Cells, (Advances in Mathematical Fluid Mechanics), Birkhäuser Verlag, 2006, p. 202.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972.
R. Hidalgo, I. Markina and A. Vasil'ev, Finite dimensional grading of the Virasoro algebra, Georg. Math. J. 14 (2007), 419-434.
I. Markina, D. Prokhorov, and A. Vasil'ev, Sub-Riemannian geometry of the coefficients of univalent functions, arXiv:math/0608532 [math.CV], p. 11, 2006.
V. Ovsienko and S. Tabachnikov, What is the Schwarzian Derivative?, AMS Notices 56 (01), 34-36.
A. Vasil’ev, Energy characteristics of subordination chains, arXiv:math-ph/0509072 [math-ph], p. 11, 2005.
FORMULA
See references for recurrences and lowering operators.
EXAMPLE
.. P(0,c) = 0
.. P(1,c) = 0
.. P(2,c) = c(2) - c(1)^2
.. P(3,c) = 4 c(3) - 8 c(2)c(1) + 4 c(1)^3 = 4 3' - 8 2'1' + 4 1'^3
.. P(4,c) = 10 4' - 20 3'1' - 12 2'^2 + 34 2'1'^2 - 12 1'^4
.. P(5,c) = 20 5' - 40 1'4' - 52 2'3' + 72 3'1'^2 + 84 2'^2 1'- 116 2'1'^3 + 32 1'^5
The partitions are arranged in the order of those of Abramowitz and Stegun on p. 831.
MATHEMATICA
max = 7; f[x_] := 1+Sum[(k+1)*c[k]*x^k, {k, 1, max}]; Lf[x_] := Log[f[x]]; s = (x^2/6)*(Lf''[x]-1/2*Lf'[x]^2); coes = CoefficientList[Series[s, {x, 0, max}], x]; p[n_] := coes[[n+1]]; row[n_] := Module[{r, r1, r2, r3, r4, asteg, pos}, r = List @@ Expand[p[n]]; r1 = r /. c[_] -> 1; r2 = r/r1; r3 = (r2 /. Times -> List /. c[i_]^k_ :> Array[i&, k] ) /. c[i_] :> {i}; r4 = Flatten /@ r3; asteg = Reverse /@ IntegerPartitions[n] //. {a___List, b_List, c_List, d___List} /; Length[b] > Length[c] :> {a, c, b, d}; Do[pos[i] = Position[asteg, r4[[i]], 1, 1][[1, 1]], {i, 1, Length[r]}]; Table[r1[[pos[i]]], {i, 1, Length[r]}]]; Table[row[n], {n, 2, max}] // Flatten (* Jean-François Alcover, Dec 24 2013 *)
CROSSREFS
Sequence in context: A322258 A141402 A276619 * A278676 A010298 A196177
KEYWORD
easy,sign,tabf
AUTHOR
Tom Copeland, Oct 22 2008
EXTENSIONS
Clarified relations among g(x), f(x), and Schwarzian derivative Tom Copeland, Dec 08 2009
STATUS
approved