login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278670
Number of n X 2 0..1 arrays with rows in nondecreasing lexicographic order and columns in nonincreasing lexicographic order, but with exactly one mistake.
1
1, 8, 33, 99, 245, 532, 1050, 1926, 3333, 5500, 8723, 13377, 19929, 28952, 41140, 57324, 78489, 105792, 140581, 184415, 239085, 306636, 389390, 489970, 611325, 756756, 929943, 1134973, 1376369, 1659120, 1988712, 2371160, 2813041, 3321528
OFFSET
1,2
LINKS
FORMULA
Empirical: a(n) = (1/720)*n^6 + (1/48)*n^5 + (23/144)*n^4 + (19/48)*n^3 + (61/180)*n^2 + (1/12)*n.
Conjectures from Colin Barker, Feb 10 2019: (Start)
G.f.: x*(1 + x - 2*x^2 + x^3) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=4:
..1..0. .0..0. .1..0. .1..0. .0..1. .0..0. .0..0. .0..0. .0..0. .0..0
..1..1. .1..0. .0..0. .1..1. .1..0. .0..0. .1..0. .1..0. .1..0. .0..0
..0..0. .0..0. .0..0. .1..0. .1..1. .1..1. .0..1. .0..1. .0..0. .0..1
..0..0. .1..1. .0..1. .1..0. .1..1. .1..0. .1..0. .0..1. .0..1. .1..0
CROSSREFS
Column 2 of A278676.
Sequence in context: A014820 A070736 A051836 * A301771 A070051 A087235
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 25 2016
STATUS
approved