login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ((2*n+1)/(n+1))*Sum_{j=0..n/2} binomial(n+1, j)*binomial(n-j-1, n-2*j).
1

%I #21 Jun 07 2017 00:43:01

%S 1,0,5,7,27,66,195,540,1547,4408,12663,36455,105325,305046,885573,

%T 2576007,7506675,21909720,64039119,187418205,549141249,1610708190,

%U 4729015305,13896677718,40870234629,120290710176,354292339625,1044178154305

%N a(n) = ((2*n+1)/(n+1))*Sum_{j=0..n/2} binomial(n+1, j)*binomial(n-j-1, n-2*j).

%H G. C. Greubel, <a href="/A278646/b278646.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: -(2*x*sqrt(-3*x^2-2*x+1)-2*x-2)/(-3*x^3+sqrt(-3*x^2-2*x+1)*(x^2+2*x+1)-5*x^2-x+1).

%F a(n) = (2*n + 1)*3F2(1-n/2,3/2-n/2,-n; 2,2-n; 4). - _Ilya Gutkovskiy_, Nov 25 2016

%F a(n) ~ 3^(n+3/2)/(4*sqrt(Pi*n)). - _Vaclav Kotesovec_, Nov 27 2016

%t Table[(2 n + 1)/(n + 1) Sum[Binomial[n + 1, j] Binomial[n - j - 1, n - 2 j], {j, 0, Floor[n/2]}], {n, 0, 27}] (* or *)

%t CoefficientList[Series[-(2 x # - 2 x - 2)/(-3 x^3 + # (x^2 + 2 x + 1) - 5 x^2 - x + 1) &@ Sqrt[-3 x^2 - 2 x + 1], {x, 0, 27}], x] (* _Michael De Vlieger_, Nov 24 2016 *)

%o (Maxima) a(n):=((2*n+1)*sum(binomial(n+1,j)*binomial(n-j-1,n-2*j),j,0,n/2))/(n+1);

%o (PARI) a(n) = (2*n+1)*sum(j=0, n\2, binomial(n+1, j)*binomial(n-j-1, n-2*j))/(n+1); \\ _Michel Marcus_, Dec 03 2016

%Y Cf. A005043.

%K nonn

%O 0,3

%A _Vladimir Kruchinin_, Nov 24 2016