login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278646
a(n) = ((2*n+1)/(n+1))*Sum_{j=0..n/2} binomial(n+1, j)*binomial(n-j-1, n-2*j).
1
1, 0, 5, 7, 27, 66, 195, 540, 1547, 4408, 12663, 36455, 105325, 305046, 885573, 2576007, 7506675, 21909720, 64039119, 187418205, 549141249, 1610708190, 4729015305, 13896677718, 40870234629, 120290710176, 354292339625, 1044178154305
OFFSET
0,3
LINKS
FORMULA
G.f.: -(2*x*sqrt(-3*x^2-2*x+1)-2*x-2)/(-3*x^3+sqrt(-3*x^2-2*x+1)*(x^2+2*x+1)-5*x^2-x+1).
a(n) = (2*n + 1)*3F2(1-n/2,3/2-n/2,-n; 2,2-n; 4). - Ilya Gutkovskiy, Nov 25 2016
a(n) ~ 3^(n+3/2)/(4*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 27 2016
MATHEMATICA
Table[(2 n + 1)/(n + 1) Sum[Binomial[n + 1, j] Binomial[n - j - 1, n - 2 j], {j, 0, Floor[n/2]}], {n, 0, 27}] (* or *)
CoefficientList[Series[-(2 x # - 2 x - 2)/(-3 x^3 + # (x^2 + 2 x + 1) - 5 x^2 - x + 1) &@ Sqrt[-3 x^2 - 2 x + 1], {x, 0, 27}], x] (* Michael De Vlieger, Nov 24 2016 *)
PROG
(Maxima) a(n):=((2*n+1)*sum(binomial(n+1, j)*binomial(n-j-1, n-2*j), j, 0, n/2))/(n+1);
(PARI) a(n) = (2*n+1)*sum(j=0, n\2, binomial(n+1, j)*binomial(n-j-1, n-2*j))/(n+1); \\ Michel Marcus, Dec 03 2016
CROSSREFS
Cf. A005043.
Sequence in context: A166100 A135606 A051845 * A029668 A144392 A268701
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Nov 24 2016
STATUS
approved