login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of parts of the second sort in all partitions of n into two sorts of parts.
2

%I #18 Nov 10 2017 08:00:30

%S 0,1,5,17,53,145,385,957,2333,5493,12741,28941,65049,144225,317229,

%T 691457,1497901,3224145,6906969,14726701,31282421,66211253,139720445,

%U 294007373,617154865,1292516577,2701451621,5635565761,11736442005,24403092657,50666528209

%N Total number of parts of the second sort in all partitions of n into two sorts of parts.

%C a(n) is odd for n > 0.

%H Alois P. Heinz, <a href="/A278464/b278464.txt">Table of n, a(n) for n = 0..3309</a>

%H William Dugan, Sam Glennon, Paul E. Gunnells, Einar Steingrimsson, <a href="https://arxiv.org/abs/1702.02446">Tiered trees, weights, and q-Eulerian numbers</a>, arXiv:1702.02446 [math.CO], Feb 2017

%F a(n) = Sum_{k=0..n} k * A256193(n,k).

%p b:= proc(n, i) option remember; `if`(n=0, [1/2, 0], `if`(i<1, 0,

%p b(n, i-1) +`if`(i>n, 0, (p-> p+[0, p[1]])(2*b(n-i, i)))))

%p end:

%p a:= n-> b(n$2)[2]:

%p seq(a(n), n=0..35);

%t b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*Sum[x^t*Binomial[j, t], {t, 0, j}], {j, 0, n/i}]]]];

%t a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]] . Range[0, n];

%t Table[a[n], {n, 0, 30}] (* _Jean-François Alcover_, Nov 10 2017, after _Alois P. Heinz_ *)

%Y Cf. A006128, A070933, A256193.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Nov 22 2016