login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278464
Total number of parts of the second sort in all partitions of n into two sorts of parts.
2
0, 1, 5, 17, 53, 145, 385, 957, 2333, 5493, 12741, 28941, 65049, 144225, 317229, 691457, 1497901, 3224145, 6906969, 14726701, 31282421, 66211253, 139720445, 294007373, 617154865, 1292516577, 2701451621, 5635565761, 11736442005, 24403092657, 50666528209
OFFSET
0,3
COMMENTS
a(n) is odd for n > 0.
LINKS
William Dugan, Sam Glennon, Paul E. Gunnells, Einar Steingrimsson, Tiered trees, weights, and q-Eulerian numbers, arXiv:1702.02446 [math.CO], Feb 2017
FORMULA
a(n) = Sum_{k=0..n} k * A256193(n,k).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, [1/2, 0], `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, (p-> p+[0, p[1]])(2*b(n-i, i)))))
end:
a:= n-> b(n$2)[2]:
seq(a(n), n=0..35);
MATHEMATICA
b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*Sum[x^t*Binomial[j, t], {t, 0, j}], {j, 0, n/i}]]]];
a[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n}]][b[n, n]] . Range[0, n];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Nov 10 2017, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Nov 22 2016
STATUS
approved