OFFSET
1,3
COMMENTS
This is the value of a series of Ramanujan, namely 1 + 9*(1/4)^4 + 17*(1*5/(4*8))^4 + 25*(1*5*9/(4*8*12))^4 + ... = Sum_{k>=0} (1+8*k)*(risefac(1/4,k)/k!)^4 where risefac(x,k) = Product_{j=0..k-1} (x+j), and risefac(x,0) = 1. See the Hardy reference, p. 7, eq. (1.3) and p. 105, eq. (7.4.3) for s=1/4 (after division by s).
REFERENCES
G. H. Hardy, Ramanujan, AMS Chelsea Publ., Providence, RI, 2002, pp. 7, 105.
LINKS
G. C. Greubel, Table of n, a(n) for n = 1..5000
FORMULA
2^(3/2) / (sqrt(Pi)*Gamma(3/4)^2).
EXAMPLE
1.06267989991684365118249019510...
MATHEMATICA
First@ RealDigits@ N[2^(3/2)/(Sqrt[Pi] Gamma[3/4]^2), 104] (* Michael De Vlieger, Nov 15 2016 *)
RealDigits[2^(3/2)/(Sqrt[Pi]*(Gamma[3/4])^2), 10, 50][[1]] (* G. C. Greubel, Jan 10 2017 *)
PROG
(PARI) 2^(3/2)/(sqrt(Pi)*(gamma(3/4))^2) \\ G. C. Greubel, Jan 10 2017
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Wolfdieter Lang, Nov 15 2016
STATUS
approved