OFFSET
2,2
COMMENTS
LINKS
A. Blecher, C. Brennan, and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
FORMULA
G.f.: G(t,z), where t marks number of horizontal steps in the valleys and z marks semiperimeter, satisfies aG^2 - bG + c = 0, where a = tz(1-z)^2, b = 1 - 3z - tz + z^2 + 3t*z^2 -tz^4, c = z^2*(1-z)(1-tz).
EXAMPLE
Row 6 is 34,1 because among the 35 (=A082582(6)) bargraphs of semiperimeter 6 only one has a valley; it corresponds to the composition [2,1,2] and its width is 1.
Triangle starts:
1;
2;
5;
13;
34, 1;
89, 7, 1
MAPLE
a := t*z*(1-z)^2: b := 1-3*z-t*z+z^2+3*t*z^2-t*z^4: c := z^2*(1-z)*(1-t*z): G := RootOf(a*G^2-b*G+c = 0, G): Gser := simplify(series(G, z = 0, 20)): for n from 2 to 16 do P[n] := sort(coeff(Gser, z, n)) end do: 1; 2; 5; 13; for n from 6 to 16 do seq(coeff(P[n], t, j), j = 0 .. n-5) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Jan 06 2017
STATUS
approved