login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

G.f.: 2*x*(1-x*sqrt(1-4*x))/((1+2*x^2+sqrt(1-4*x))*sqrt(1-4*x)).
1

%I #13 Jun 24 2018 13:46:28

%S 0,1,2,8,30,109,401,1495,5623,21289,81034,309817,1188932,4576980,

%T 17667647,68359881,265045494,1029512644,4005417845,15606129991,

%U 60885118375,237816401610,929909358659,3639712494186,14258889345834,55906875628333,219370377887309,861389105627213,3384600499000626

%N G.f.: 2*x*(1-x*sqrt(1-4*x))/((1+2*x^2+sqrt(1-4*x))*sqrt(1-4*x)).

%H G. C. Greubel, <a href="/A278023/b278023.txt">Table of n, a(n) for n = 0..1000</a>

%H J. L. Baril, <a href="http://jl.baril.u-bourgogne.fr/vincular.pdf">Avoiding patterns in irreducible permutations</a>, Discrete Mathematics and Theoretical Computer Science, submitted 2014. See Table 3.

%F a(n) ~ 2^(2*n+2) / (9*sqrt(Pi*n)). - _Vaclav Kotesovec_, Nov 10 2016

%F Conjecture: +n*(3*n^2-12*n+11) *a(n) -(3*n-5) *(3*n^2-9*n+4) *a(n-1) -2*(2*n-5) *(3*n^2-6*n+2) *a(n-2) +n *(3*n^2-12*n+11) *a(n-3) -2 *(2*n-5) *(3*n^2-6*n+2) *a(n-4)=0. - _R. J. Mathar_, Jun 24 2018

%t CoefficientList[Series[2*x*(1-x*Sqrt[1-4*x])/(Sqrt[1-4*x]*(1+2*x^2+Sqrt[1-4*x])), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Nov 10 2016 *)

%o (PARI) x='x+O('x^50); concat([0], Vec(2*x*(1-x*sqrt(1-4*x) )/( (1+ 2*x^2 +sqrt(1-4*x))*sqrt(1-4*x)))) \\ _G. C. Greubel_, Jun 05 2017

%K nonn

%O 0,3

%A _N. J. A. Sloane_, Nov 09 2016