login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278023
G.f.: 2*x*(1-x*sqrt(1-4*x))/((1+2*x^2+sqrt(1-4*x))*sqrt(1-4*x)).
1
0, 1, 2, 8, 30, 109, 401, 1495, 5623, 21289, 81034, 309817, 1188932, 4576980, 17667647, 68359881, 265045494, 1029512644, 4005417845, 15606129991, 60885118375, 237816401610, 929909358659, 3639712494186, 14258889345834, 55906875628333, 219370377887309, 861389105627213, 3384600499000626
OFFSET
0,3
LINKS
J. L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, submitted 2014. See Table 3.
FORMULA
a(n) ~ 2^(2*n+2) / (9*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 10 2016
Conjecture: +n*(3*n^2-12*n+11) *a(n) -(3*n-5) *(3*n^2-9*n+4) *a(n-1) -2*(2*n-5) *(3*n^2-6*n+2) *a(n-2) +n *(3*n^2-12*n+11) *a(n-3) -2 *(2*n-5) *(3*n^2-6*n+2) *a(n-4)=0. - R. J. Mathar, Jun 24 2018
MATHEMATICA
CoefficientList[Series[2*x*(1-x*Sqrt[1-4*x])/(Sqrt[1-4*x]*(1+2*x^2+Sqrt[1-4*x])), {x, 0, 20}], x] (* Vaclav Kotesovec, Nov 10 2016 *)
PROG
(PARI) x='x+O('x^50); concat([0], Vec(2*x*(1-x*sqrt(1-4*x) )/( (1+ 2*x^2 +sqrt(1-4*x))*sqrt(1-4*x)))) \\ G. C. Greubel, Jun 05 2017
CROSSREFS
Sequence in context: A127865 A199923 A230269 * A077839 A052530 A274798
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 09 2016
STATUS
approved