OFFSET
0,1
COMMENTS
For n>=1, a(n) is the second Zagreb index of the triangular grid graph T[n] (see the West reference, p. 390). The second Zagreb index of a simple connected graph is the sum of the degree products d(i)d(j) over all edges ij of the graph.
The M-polynomial of the triangular grid graph T[n] is M(T[n], x, y) = 6*x^2*y^4 + 3*(n-1)*x^4*y^4 +6*(n-2)*x^4*y^6+3*(n-2)*(n-3)*x^6*y^6/2.
REFERENCES
D. B. West, Introduction to Graph Theory, 2nd edition, Prentice-Hall, 2001.
LINKS
E. Deutsch and Sandi Klavzar, M-polynomial and degree-based topological indices, Iranian J. Math. Chemistry, 6, No. 2, 2015, 93-102.
Eric Weisstein's World of Mathematics, .html">Triangular Grid Graph
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
O.g.f.: 12*(14*x^2 - 8*x + 3)/(1 - x)^3.
E.g.f.: 6*(9*x^2 - 4*x + 6)*exp(x). - Bruno Berselli, Nov 11 2016
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). - Wesley Ivan Hurt, Jan 15 2022
a(n) = 12*A064225(n-1). - R. J. Mathar, Jul 22 2022
MAPLE
seq(54*n^2-78*n+36, n=0..40);
MATHEMATICA
Table[54 n^2 - 78 n + 36, {n, 0, 50}] (* Bruno Berselli, Nov 11 2016 *)
PROG
(Sage) [54*n^2-78*n+36 for n in range(50)] # Bruno Berselli, Nov 11 2016
(Magma) [54*n^2-78*n+36: n in [0..50]]; // Bruno Berselli, Nov 11 2016
(PARI) a(n)=54*n^2-78*n+36 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Emeric Deutsch, Nov 11 2016
STATUS
approved