login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277827
Digits that appear twice consecutively in the decimal expansion of Pi, in order of appearance.
0
3, 8, 9, 4, 9, 1, 6, 4, 5, 2, 1, 1, 1, 5, 5, 4, 2, 4, 8, 6, 3, 4, 3, 6, 6, 3, 0, 6, 5, 8, 8, 0, 1, 3, 8, 6, 1, 3, 1, 1, 1, 4, 9, 8, 2, 1, 3, 3, 4, 6, 2, 7, 6, 0, 0, 7, 7, 7, 4, 2, 2, 9, 1, 4, 7, 7, 9, 1, 9, 9, 9, 9, 9, 9, 4, 5, 2, 3, 4, 1, 8, 0, 0, 8, 3, 7, 6, 5, 1, 8, 7, 7, 2, 6, 0, 6, 1, 1, 8, 3
OFFSET
1,1
COMMENTS
A digit d of Pi is in this sequence iff A000796(i) = A000796(i+1), where i is the index of d in A000796. - Felix Fröhlich, Nov 01 2016
FORMULA
a(n) = A000796(A049514(n)).
EXAMPLE
Pi=3.14159265358979323846264(33)83279502(88)41971693(99)3751058209749(44)592307816406286208(99)8628034825342(11)70679...
Therefore, this sequence starts 3, 8, 9, 4, 9, 1.
PROG
(PARI) pidigit(n) = floor(Pi*10^n) - 10*floor(Pi*10^(n-1))
terms(n) = my(k=1, i=0); while(1, if(pidigit(k)==pidigit(k+1), print1(pidigit(k), ", "); i++); if(i==n, break); k++)
/* Print initial 100 terms as follows */
terms(100) \\ Felix Fröhlich, Nov 01 2016
CROSSREFS
Sequence in context: A177272 A010630 A197811 * A011276 A021882 A079591
KEYWORD
nonn,base
AUTHOR
Bobby Jacobs, Nov 01 2016
STATUS
approved