Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 28 2024 10:08:21
%S 1,2,3,1,5,2,7,1,1,2,11,3,13,2,3,1,17,2,19,5,3,2,23,3,1,2,1,7,29,2,31,
%T 1,3,2,5,1,37,2,3,5,41,2,43,11,5,2,47,3,1,2,3,13,53,2,5,7,3,2,59,3,61,
%U 2,7,1,5,2,67,17,3,2,71,1,73,2,3,19,7,2,79,5,1,2,83,3,5,2,3,11,89,2,7,23,3,2,5,3,97,2,11,1,101,2,103,13,3
%N a(n) = least unitary prime divisor of n or 1 if no such prime-divisor exists.
%H Antti Karttunen, <a href="/A277698/b277698.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A008578(1+A277697(n)).
%F a(n) = A020639(A055231(n)). - _Amiram Eldar_, Jul 28 2024
%t Table[If[Length@ # == 0, 1, First@ #] &@ Select[FactorInteger[n][[All, 1]], GCD[#, n/#] == 1 &], {n, 105}] (* _Michael De Vlieger_, Oct 30 2016 *)
%o (Scheme) (define (A277698 n) (A008578 (+ 1 (A277697 n))))
%o (Python)
%o from sympy import factorint, prime, primepi, isprime, primefactors
%o def a049084(n): return primepi(n)*(1*isprime(n))
%o def a055396(n): return 0 if n==1 else a049084(min(primefactors(n)))
%o def a028234(n):
%o f = factorint(n)
%o return 1 if n==1 else n/(min(f)**f[min(f)])
%o def a067029(n):
%o f=factorint(n)
%o return 0 if n==1 else f[min(f)]
%o def a277697(n): return 0 if n==1 else a055396(n) if a067029(n)==1 else a277697(a028234(n))
%o def a008578(n): return 1 if n==1 else prime(n - 1)
%o def a(n): return a008578(1 + a277697(n)) # _Indranil Ghosh_, May 16 2017
%o (PARI) a(n) = {my(f = factor(n)); for(i = 1, #f~, if(f[i, 2] == 1, return(f[i, 1]))); 1;} \\ _Amiram Eldar_, Jul 28 2024
%Y Cf. A008578, A020639, A055231, A277697.
%Y Cf. A001694 (positions of ones).
%Y Cf. A080368 for a variant which gives 0's instead of 1's for numbers with no unitary prime divisors and also A277708 (the least prime factor with an odd exponent).
%Y Differs from A134194 for the first time at n=18, where a(18) = 2, while A134194(18) = 3.
%K nonn
%O 1,2
%A _Antti Karttunen_, Oct 28 2016