login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277678
Number T(n,k) of binary words of length n containing exactly k (possibly overlapping) occurrences of the subword 11011; triangle T(n,k), n>=0, k=0..max(0,floor((n-2)/3)), read by rows.
3
1, 2, 4, 8, 16, 31, 1, 60, 4, 116, 12, 225, 30, 1, 437, 70, 5, 849, 158, 17, 1649, 351, 47, 1, 3202, 770, 118, 6, 6217, 1669, 283, 23, 12071, 3578, 664, 70, 1, 23438, 7599, 1535, 189, 7, 45510, 16016, 3500, 480, 30, 88368, 33545, 7876, 1182, 100, 1, 171586
OFFSET
0,2
LINKS
FORMULA
G.f. of column k=0: -(x^4+x^3+1)/(x^5+x^4-x^3+2*x-1); g.f. of column k>0: x^5*(x^3*(x^2+x-1))^(k-1)/(x^5+x^4-x^3+2*x-1)^(k+1).
Sum_{k>=0} k * T(n,k) = A001787(n-4) for n>3.
EXAMPLE
Triangle T(n,k) begins:
: 1;
: 2;
: 4;
: 8;
: 16;
: 31, 1;
: 60, 4;
: 116, 12;
: 225, 30, 1;
: 437, 70, 5;
: 849, 158, 17;
: 1649, 351, 47, 1;
: 3202, 770, 118, 6;
MAPLE
b:= proc(n, t) option remember; expand(
`if`(n=0, 1, b(n-1, [1, 1, 4, 1, 1][t])+
`if`(t=5, x, 1)* b(n-1, [2, 3, 3, 5, 3][t])))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):
seq(T(n), n=0..20);
# second Maple program:
gf:= k-> `if`(k=0, -(x^4+x^3+1), x^5*(x^3*(x^2+x-1))^(k-1))
/(x^5+x^4-x^3+2*x-1)^(k+1):
T:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
seq(seq(T(n, k), k=0..max(0, floor((n-2)/3))), n=0..20);
MATHEMATICA
b[n_, t_] := b[n, t] = Expand[
If[n == 0, 1, b[n-1, {1, 1, 4, 1, 1}[[t]]] +
If[t == 5, x, 1]*b[n-1, {2, 3, 3, 5, 3}[[t]]]]];
T[n_] := CoefficientList[b[n, 1], x];
Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)
CROSSREFS
Column k=0 gives A210021.
Row sums give A000079.
Row sums except column k=0 give A276785.
Sequence in context: A244825 A220843 A277751 * A018763 A054517 A054016
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Oct 26 2016
STATUS
approved