OFFSET
0,2
LINKS
Alois P. Heinz, Rows n = 0..350, flattened
FORMULA
G.f. of column k=0: -(x^4+x^3+1)/(x^5+x^4-x^3+2*x-1); g.f. of column k>0: x^5*(x^3*(x^2+x-1))^(k-1)/(x^5+x^4-x^3+2*x-1)^(k+1).
Sum_{k>=0} k * T(n,k) = A001787(n-4) for n>3.
EXAMPLE
Triangle T(n,k) begins:
: 1;
: 2;
: 4;
: 8;
: 16;
: 31, 1;
: 60, 4;
: 116, 12;
: 225, 30, 1;
: 437, 70, 5;
: 849, 158, 17;
: 1649, 351, 47, 1;
: 3202, 770, 118, 6;
MAPLE
b:= proc(n, t) option remember; expand(
`if`(n=0, 1, b(n-1, [1, 1, 4, 1, 1][t])+
`if`(t=5, x, 1)* b(n-1, [2, 3, 3, 5, 3][t])))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):
seq(T(n), n=0..20);
# second Maple program:
gf:= k-> `if`(k=0, -(x^4+x^3+1), x^5*(x^3*(x^2+x-1))^(k-1))
/(x^5+x^4-x^3+2*x-1)^(k+1):
T:= (n, k)-> coeff(series(gf(k), x, n+1), x, n):
seq(seq(T(n, k), k=0..max(0, floor((n-2)/3))), n=0..20);
MATHEMATICA
b[n_, t_] := b[n, t] = Expand[
If[n == 0, 1, b[n-1, {1, 1, 4, 1, 1}[[t]]] +
If[t == 5, x, 1]*b[n-1, {2, 3, 3, 5, 3}[[t]]]]];
T[n_] := CoefficientList[b[n, 1], x];
Table[T[n], {n, 0, 20}] // Flatten (* Jean-François Alcover, Apr 29 2022, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Alois P. Heinz, Oct 26 2016
STATUS
approved