OFFSET
1,2
COMMENTS
Positions of 1 in A065882.
This is one sequence in a 3-way splitting of the positive integers; the other two are A036554 and A055050, as in the Mathematica program.
The asymptotic density of this sequence is 1/3. - Amiram Eldar, Mar 08 2021
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
MAPLE
filter:= n -> n/2^(2*floor(padic:-ordp(n, 2)/2)) mod 4 = 1:
select(filter, [$1..1000]); # Robert Israel, Oct 20 2016
MATHEMATICA
PROG
(PARI) isok(n) = n/4^valuation(n, 4) % 4 == 1; \\ Michel Marcus, Oct 20 2016
(Python)
from itertools import count, islice
def A277549_gen(startvalue=1): # generator of terms >= startvalue
return filter(lambda n:(n>>((~n&n-1).bit_length()&-2))&3==1, count(max(startvalue, 1)))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 20 2016
STATUS
approved