This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A277328 Number of primes (counted with multiplicity) dividing gcd(A260443(n), A260443(n+1)): a(n) = A001222(A277198(n)). 7

%I

%S 0,0,1,0,0,1,2,0,0,2,2,1,1,2,3,0,0,3,3,1,1,4,4,1,1,4,4,2,2,3,4,0,0,4,

%T 4,3,2,5,6,1,1,7,6,2,3,6,6,1,1,6,6,3,3,7,7,2,2,6,6,3,3,4,5,0,0,5,5,4,

%U 4,8,8,2,2,9,9,4,4,8,9,1,1,10,9,5,5,10,11,2,2,11,10,5,6,8,8,1,1,8,8,5,4,10,11,3,3,12

%N Number of primes (counted with multiplicity) dividing gcd(A260443(n), A260443(n+1)): a(n) = A001222(A277198(n)).

%H Antti Karttunen, <a href="/A277328/b277328.txt">Table of n, a(n) for n = 0..8192</a>

%F a(n) = A001222(A277198(n)).

%F a(n) >= A277327(n).

%o (Scheme)

%o (define (A277328 n) (A001222 (A277198 n)))

%o ;; A standalone implementation:

%o (define (A277328 n) (reduce + 0 (gcd_of_exp_lists (A260443as_coeff_list n) (A260443as_coeff_list (+ 1 n)))))

%o (definec (A260443as_coeff_list n) (cond ((zero? n) (list)) ((= 1 n) (list 1)) ((even? n) (cons 0 (A260443as_coeff_list (/ n 2)))) (else (add_two_lists (A260443as_coeff_list (/ (- n 1) 2)) (A260443as_coeff_list (/ (+ n 1) 2))))))

%o (define (add_two_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (add_two_lists nums2 nums1)) (else (map + nums1 (append nums2 (make-list (- len1 len2) 0)))))))

%o (define (gcd_of_exp_lists nums1 nums2) (let ((len1 (length nums1)) (len2 (length nums2))) (cond ((< len1 len2) (gcd_of_exp_lists nums2 nums1)) (else (map min nums1 (append nums2 (make-list (- len1 len2) 0)))))))

%Y Cf. A001222, A125184, A260443, A277198, A277327.

%K nonn,look

%O 0,7

%A _Antti Karttunen_, Oct 13 2016

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 12 17:50 EST 2019. Contains 329960 sequences. (Running on oeis4.)