login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277136
Numbers k such that cos(k) > 0 and cos(k+2) > 0.
5
5, 11, 12, 18, 24, 30, 37, 43, 49, 55, 56, 62, 68, 74, 81, 87, 93, 99, 100, 106, 112, 118, 125, 131, 137, 143, 144, 150, 156, 162, 169, 175, 181, 187, 188, 194, 200, 206, 213, 219, 225, 231, 232, 238, 244, 250, 257, 263, 269, 275, 276, 282, 288, 294, 301
OFFSET
1,1
COMMENTS
Guide to related sequences (a four-way splitting of the positive integers):
A277136: cos(k) > 0 and cos(k+2) > 0
A277137: cos(k) > 0 and cos(k+2) < 0
A277138: cos(k) < 0 and cos(k+2) > 0
A277139: cos(k) < 0 and cos(k+2) < 0
See A277093 for a related guide involving sines.
From Robert Israel, Oct 07 2016: (Start)
k such that floor(k/Pi + 1/2) and floor((k+2)/Pi + 1/2) are even.
The sequence has asymptotic density 1/2 - 1/Pi, so that a(n) ~ 2*Pi*n/(Pi - 2).
The scatter plot of a(n) - 2*Pi*n/(Pi-2) shows interesting patterns (see link). (End)
MAPLE
select(t -> floor(t/Pi+1/2)::even and floor((t+2)/Pi+1/2)::even, [$0..1000]); # Robert Israel, Oct 07 2016
MATHEMATICA
z = 400; f[x_] := Cos[x];
Select[Range[z], f[#] > 0 && f[# + 2] > 0 &] (* A277136 *)
Select[Range[z], f[#] > 0 && f[# + 2] < 0 &] (* A277137 *)
Select[Range[z], f[#] < 0 && f[# + 2] > 0 &] (* A277138 *)
Select[Range[z], f[#] < 0 && f[# + 2] < 0 &] (* A277139 *)
PROG
(PARI) is(n) = cos(n) > 0 && cos(n+2) > 0 \\ Felix Fröhlich, Oct 14 2016
CROSSREFS
Cf. A277137, A277138, A277139, subsequence of A131503.
Cf. A277093.
Sequence in context: A139200 A102181 A103068 * A176821 A070369 A357995
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 01 2016
STATUS
approved