OFFSET
1,1
COMMENTS
Guide to related sequences (a four-way splitting of the positive integers):
A277136: cos(k) > 0 and cos(k+2) > 0
A277137: cos(k) > 0 and cos(k+2) < 0
A277138: cos(k) < 0 and cos(k+2) > 0
A277139: cos(k) < 0 and cos(k+2) < 0
See A277093 for a related guide involving sines.
From Robert Israel, Oct 07 2016: (Start)
k such that floor(k/Pi + 1/2) and floor((k+2)/Pi + 1/2) are even.
The sequence has asymptotic density 1/2 - 1/Pi, so that a(n) ~ 2*Pi*n/(Pi - 2).
The scatter plot of a(n) - 2*Pi*n/(Pi-2) shows interesting patterns (see link). (End)
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..10000
Robert Israel, Scatter plot of a(n) - 2*Pi*n/(Pi-2)
MAPLE
select(t -> floor(t/Pi+1/2)::even and floor((t+2)/Pi+1/2)::even, [$0..1000]); # Robert Israel, Oct 07 2016
MATHEMATICA
PROG
(PARI) is(n) = cos(n) > 0 && cos(n+2) > 0 \\ Felix Fröhlich, Oct 14 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 01 2016
STATUS
approved