login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A277131
Magic numbers of anti-Mackay icosahedra.
1
45, 127, 279, 521, 873, 1355, 1987, 2789, 3781, 4983, 6415, 8097, 10049, 12291, 14843, 17725, 20957, 24559, 28551, 32953, 37785, 43067, 48819, 55061, 61813, 69095, 76927, 85329, 94321, 103923, 114155, 125037, 136589, 148831, 161783, 175465, 189897, 205099
OFFSET
2,1
FORMULA
a(n) = A005902(n) - A008592(n-1).
a(n) = 10/3*n^3 + 25*n^2 + 161/3*n + 45 with offset 0.
From Colin Barker, Oct 01 2016: (Start)
a(n) = 4*a(n-1)-6*a(n-2)+4*a(n-3)-a(n-4) for n>5.
a(n) = 11-(19*n)/3+5*n^2+(10*n^3)/3.
G.f.: x^2*(45-53*x+41*x^2-13*x^3) / (1-x)^4.
(End)
MAPLE
A277131:=n->11-(19*n)/3+5*n^2+(10*n^3)/3: seq(A277131(n), n=2..50); # Wesley Ivan Hurt, Oct 07 2016
MATHEMATICA
DeleteCases[CoefficientList[Series[x^2*(45 - 53 x + 41 x^2 - 13 x^3)/(1 - x)^4, {x, 0, 39}], x], 0] (* Michael De Vlieger, Oct 02 2016 *)
PROG
(PARI) a(n) = (2*n+1) * (5*n^2+5*n+3) / 3 - 10*(n-1)
(PARI) Vec(x^2*(45-53*x+41*x^2-13*x^3)/(1-x)^4 + O(x^50)) \\ Colin Barker, Oct 01 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Felix Fröhlich, Oct 01 2016
STATUS
approved