Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Sep 17 2016 22:55:22
%S 1,1,3,6,20,31,278,337,17412,24798,6772374,6838020,11484638201,
%T 11505059694,80455953355044,80659880546429,2306084675313241000,
%U 2306326405122809872,268657126294137376567236,268664044710902946519968,126765866019584067600135507174,126766706181193131138562011916,241678197716027150352300025709078423,241678578014230878979840920532089312,1858396158247302094721803368957703312268486,1858396883282148773045801834086535278817434
%N G.f.: exp( Sum_{n>=1} [ Sum_{k>=1} k^(n^2) * x^(n*k) ] / n ), a power series in x with integer coefficients.
%H Paul D. Hanna, <a href="/A276748/b276748.txt">Table of n, a(n) for n = 0..150</a>
%F G.f.: exp( Sum_{n>=1} [ Sum_{k=1..n^2} A008292(n^2,k) * x^(n*k) ] / (1 - x^n)^(n^2+1) / n ), where A008292 are the Eulerian numbers.
%e G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 20*x^4 + 31*x^5 + 278*x^6 + 337*x^7 + 17412*x^8 + 24798*x^9 + 6772374*x^10 + 6838020*x^11 + 11484638201*x^12 +...
%e such that
%e log(A(x)) = Sum_{n>=1} (x^n + 2^(n^2)*x^(2*n) + 3^(n^2)*x^(3*n) +...+ k^(n^2)*x^(k*n) +...)/n.
%e The logarithm of g.f. A(x) equals the series:
%e log(A(x)) = Sum_{n>=1} (x^n + 2^(n^2)*x^(2*n) + 3^(n^2)*x^(3*n) +...+ k^(n^2)*x^(k*n) +...)/n.
%e This logarithmic series can be written using the Eulerian numbers like so:
%e log(A(x)) = x/(1-x)^2 + (x^2 + 11*x^4 + 11*x^6 + x^8)/(1-x^2)^5/2 + (x^3 + 502*x^6 + 14608*x^9 + 88234*x^12 + 156190*x^15 + 88234*x^18 + 14608*x^21 + 502*x^24 + x^27)/(1-x^3)^10/3 + (x^4 + 65519*x^8 + 41932745*x^12 + 3572085255*x^16 + 85383238549*x^20 + 782115518299*x^24 + 3207483178157*x^28 + 6382798925475*x^32 + 6382798925475*x^36 + 3207483178157*x^40 + 782115518299*x^44 + 85383238549*x^48 + 3572085255*x^52 + 41932745*x^56 + 65519*x^60 + x^64)/(1-x^4)^17/4 + (x^5 + 33554406*x^10 + 846416194536*x^15 + 1103881308184906*x^20 + 269025107855605626*x^25 + 21045399230106913746*x^30 + 695824003645512474376*x^35 + 11392907456028953400606*x^40 + 101955892318210543172751*x^45 + 531714261368950897339996*x^50 + 1685388700882132120106256*x^55 + 3334612565134607644610436*x^60 + 4179647109945703200884716*x^65 + 3334612565134607644610436*x^70 + 1685388700882132120106256*x^75 + 531714261368950897339996*x^80 + 101955892318210543172751*x^85 + 11392907456028953400606*x^90 + 695824003645512474376*x^95 + 21045399230106913746*x^100 + 269025107855605626*x^105 + 1103881308184906*x^110 + 846416194536*x^115 + 33554406*x^120 + x^125)/(1-x^5)^26/5 +...+ [Sum_{k=1..n^2} A008292(n^2,k) * x^(n*k)]/(1 - x^n)^(n^2+1)/n +...
%o (PARI) {a(n) = polcoeff( exp( sum(m=1, n+1, sum(k=1, n\m+1, k^(m^2) * x^(m*k) +x*O(x^n)) / m ) ), n)}
%o for(n=0, 30, print1(a(n), ", "))
%o (PARI) {A008292(n, k) = sum(j=0, k, (-1)^j * (k-j)^n * binomial(n+1, j))}
%o {a(n) = my(A=1, Oxn=x*O(x^n)); A = exp( sum(m=1, n+1, sum(k=1, min(m^2,n)+1, A008292(m^2, k)*x^(m*k)/(1-x^m +Oxn)^(m^2+1) ) / m ) ); polcoeff(A, n)}
%o for(n=0, 30, print1(a(n), ", "))
%Y Cf. A276749, A008292.
%K nonn
%O 0,3
%A _Paul D. Hanna_, Sep 17 2016