login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Self-composition of the repunits; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A002275.
0

%I #14 Sep 08 2022 08:46:17

%S 0,1,22,464,9658,199666,4112922,84558014,1736623658,35646098566,

%T 731452470122,15006822709814,307859627711658,6315326642698966,

%U 129547066718721322,2657377349777550614,54509922224486463658,1118139793621467673366,22935894163202834676522,470473020119757115115414

%N Self-composition of the repunits; g.f.: A(x) = G(G(x)), where G(x) = g.f. of A002275.

%H N. J. A. Sloane, <a href="/transforms.txt">Transforms</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Repunit.html">Repunit</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (33,-272,330,-100)

%F O.g.f.: x*(1 - x)*(1 - 10*x)/((1 - 21*x + 10*x^2)*(1 - 12*x + 10*x^2)).

%F a(n) = 33*a(n-1) - 272*a(n-2) + 330*a(n-3) - 100*a(n-4) for n > 3.

%F a(n) = ((6 - sqrt(26))^n - (6 + sqrt(26))^n)/(18*sqrt(26)) + 10*(((21 + sqrt(401))/2)^n - ((21 - sqrt(401))/2)^n)/(9*sqrt(401)).

%F A000035(a(n)) = A063524(n).

%t LinearRecurrence[{33, -272, 330, -100}, {0, 1, 22, 464}, 20]

%o (PARI) concat(0, Vec(x*(1-x)*(1-10*x)/((1-21*x+10*x^2)*(1-12*x+10*x^2)) + O(x^99))) \\ _Altug Alkan_, Sep 08 2016

%o (Magma) I:=[0,1,22,464]; [n le 4 select I[n] else 33*Self(n-1)-272*Self(n-2)+330*Self(n-3)-100*Self(n-4): n in [1..20]]; // _Vincenzo Librandi_, Sep 09 2016

%Y Cf. A000035, A002275, A063524.

%Y Cf. A030267 (self-composition of the natural numbers), A030279 (self-composition of the squares), A030280 (self-composition of the triangular numbers).

%K nonn,easy

%O 0,3

%A _Ilya Gutkovskiy_, Sep 08 2016