login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276639
Triangle T(m, n) = the number of point-labeled graphs with n points and m edges, no points isolated. By rows, n >= 0, ceiling(n/2) <= m <= binomial(n,2).
2
1, 1, 3, 1, 3, 16, 15, 6, 1, 30, 135, 222, 205, 120, 45, 10, 1, 15, 330, 1581, 3760, 5715, 6165, 4945, 2997, 1365, 455, 105, 15, 1, 315, 4410, 23604, 73755, 159390, 259105, 331716, 343161, 290745, 202755, 116175, 54257, 20349, 5985, 1330, 210, 21, 1
OFFSET
1,3
COMMENTS
The row sums are A006129, omitting row 1 and A006129(1).
LINKS
FORMULA
T(n, m) = Sum_{k=0,..n} binomial(n, k) * (-1)^(n-k) * A084546(k, m).
EXAMPLE
Triangle T(n, m) begins:
n/m 0 1 2 3 4 5 6 7 8 9 10
0 1 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0
3 0 0 3 1 0 0 0 0 0 0 0
4 0 0 3 16 15 6 1 0 0 0 0
5 0 0 0 30 135 222 205 120 45 10 1
MATHEMATICA
Table[Sum[Binomial[n, k] (-1)^(n - k) Binomial[Binomial[k, 2], m], {k, 0, n}], {n, 7}, {m, Ceiling[n/2], Binomial[n, 2]}] /. {} -> {1} // Flatten (* Michael De Vlieger, Sep 19 2016 *)
CROSSREFS
Another version is A054548.
Sequence in context: A112811 A197272 A306773 * A361840 A361839 A160708
KEYWORD
nonn,tabf
AUTHOR
David Pasino, Sep 08 2016
STATUS
approved