login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276279
Number of triangular partitions of n of order 8.
1
1, 8, 36, 127, 386, 1050, 2632, 6187, 13789, 29396, 60336, 119818, 231140, 434555, 798320, 1436294, 2535511, 4398876, 7510668, 12635844, 20969143, 34357138, 55625853, 89060282, 141101197, 221350031, 344008194, 529925620, 809497788, 1226738457
OFFSET
0,2
LINKS
L. Carlitz, R. Scoville, A generating function for triangular partitions, Math. Comp. 29 (1975) 67-77.
FORMULA
G.f.: 1/((1-x)^8*(1-x^3)^7*(1-x^5)^6*(1-x^7)^5*(1-x^9)^4*(1-x^11)^3*(1-x^13)^2*(1-x^15)).
MATHEMATICA
CoefficientList[Series[1/((1-x)^8 (1-x^3)^7 (1-x^5)^6 (1-x^7)^5 (1-x^9)^4 (1-x^11)^3 (1-x^13)^2 (1-x^15)), {x, 0, 50}], x]
PROG
(Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(1/((1-x)^8*(1-x^3)^7*(1-x^5)^6*(1-x^7)^5*(1-x^9)^4*(1-x^11)^3*(1-x^13)^2*(1-x^15)))); // Corrected by Georg Fischer, May 19 2019
CROSSREFS
Cf. similar sequences listed in A276235.
Sequence in context: A347751 A341222 A213581 * A210379 A131123 A055910
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 01 2016
EXTENSIONS
Terms a(10) onward corrected by Georg Fischer, May 19 2019
STATUS
approved