login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276237
Table read by antidiagonals: row n consists of k>=1 such that all primes dividing k divide n.
1
1, 1, 2, 1, 3, 4, 1, 2, 9, 8, 1, 5, 4, 27, 16, 1, 2, 25, 8, 81, 32, 1, 7, 3, 125, 16, 243, 64, 1, 2, 49, 4, 625, 32, 729, 128, 1, 3, 4, 343, 6, 3125, 64, 2187, 256, 1, 2, 9, 8, 2401, 8, 15625, 128, 6561, 512, 1, 11, 4, 27, 16, 16807, 9, 78125, 256, 19683, 1024
OFFSET
2,3
COMMENTS
If n is a power of prime p, row p consists of all powers of p.
Column 2 is A020639 (for n>=2).
LINKS
Robert Israel, Table of n, a(n) for n = 2..10012 (first 141 antidiagonals, flattened)
EXAMPLE
Table starts:
1 2 4 8 16 32 64 128 256
1 3 9 27 81 243 729 2187 6561
1 2 4 8 16 32 64 128 256
1 5 25 125 625 3125 15625 78125 390625
1 2 3 4 6 8 9 12 16
1 7 49 343 2401 16807 117649 823543 5764801
1 2 4 8 16 32 64 128 256
1 3 9 27 81 243 729 2187 6561
1 2 4 5 8 10 16 20 25
MAPLE
getRow:= proc(S, nk) option remember; local Q, x, count;
if nops(S) = 1 then [seq(S[1]^i, i=0..nk-1)]
elif nops(S) = 2 then
Q:= sort([seq(seq(S[1]^i*S[2]^j, i=0..nk-1), j=0..nk-1)]);
Q[1..nk]
else
Q:= NULL;
count:= 0;
for x from 1 while count < nk do
if numtheory:-factorset(x) subset S then
count:= count+1;
Q:= Q, x
fi
od;
[Q]
fi
end proc:
N:= 20: # for the first N-2 antidiagonals
A:= Matrix(N-1, N-2):
for n from 2 to N-1 do
A[n, 1..N-n]:= Vector[row](getRow(numtheory:-factorset(n), N-n))
od:
seq(seq(A[s-m, m], m=1..s-2), s=3..N);
MATHEMATICA
getRow[S_, nk_] := getRow[S, nk] = Module[{Q, x, count}, If[Length[S] == 1, Table[S[[1]]^i, {i, 0, nk - 1}], If[Length[S] == 2, Q = Sort[Flatten[ Table[Table[S[[1]]^i S[[2]]^j, {i, 0, nk - 1}], {j, 0, nk - 1}]]]; Q[[1 ;; nk]], Q = Nothing; count = 0; For[x = 1, count < nk, x++, If[ FactorInteger[x][[All, 1]] ~Subset~ S, count++; AppendTo[Q, x]]]]]];
M = 20; (* for the first M-2 antidiagonals *)
A = Array[0, {M - 1, M - 2}];
For[n = 2, n <= M - 1, n++, A[[n, 1 ;; M - n]] = getRow[FactorInteger[n][[All, 1]], M - n]];
Table[A[[s - m, m]], {s, 3, M}, {m, 1, s - 2}] // Flatten (* Jean-François Alcover, Oct 06 2020, after Robert Israel *)
CROSSREFS
Cf.: A003586 (row 6), A003592 (row 10).
Cf.: A020639.
Sequence in context: A372619 A330669 A084579 * A059663 A338367 A186975
KEYWORD
nonn,tabl
AUTHOR
Robert Israel, Dec 12 2016
STATUS
approved