login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A276160
A recurrence of order 3 : a(0)=a(1)=a(2)=1 ; a(n) = (a(n-1)^2 + a(n-2)^2 + a(n-1) + a(n-2) + 1)/a(n-3).
2
1, 1, 1, 5, 33, 1153, 266337, 2149605893, 4007637093066433, 60303882185826956720761345, 1691732525726797389070758961468800814420801, 714126272449521825808382965880022542720530687818734820147878380094981
OFFSET
0,4
LINKS
FORMULA
a(n) = 7*a(n-1)*a(n-2) - a(n-3) - 1.
MATHEMATICA
RecurrenceTable[{a[n] == (a[n - 1]^2 + a[n - 2]^2 + a[n - 1] + a[n - 2] + 1)/a[n - 3], a[0] == a[1] == a[2] == 1}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 22 2016 *)
nxt[{a_, b_, c_}]:={b, c, (c^2+b^2+c+b+1)/a}; NestList[nxt, {1, 1, 1}, 15][[All, 1]] (* Harvey P. Dale, Sep 16 2021 *)
PROG
(Ruby)
def A(m, n)
a = Array.new(m, 1)
ary = [1]
while ary.size < n + 1
i = a[1..-1].inject(0){|s, i| s + i * i} + a[1..-1].inject(:+) + 1
break if i % a[0] > 0
a = *a[1..-1], i / a[0]
ary << a[0]
end
ary
end
def A276160(n)
A(3, n)
end
CROSSREFS
Sequence in context: A350876 A268296 A212296 * A145505 A276126 A193325
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Aug 22 2016
STATUS
approved