OFFSET
1,2
COMMENTS
Numbers k such that the product of digits of k is a power of 7.
There are no prime terms whose number of digits is divisible by 3: for every d that is a multiple of 3, every d-digit number j consisting of no digits other than 1's and 7's will have a digit sum divisible by 3, so j will also be divisible by 3. - Mikk Heidemaa, Mar 27 2021
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000
EXAMPLE
7717 is in the sequence because 7*7*1*7 = 343 = 7^3.
MATHEMATICA
Select[Range[20000], IntegerQ[Log[7, Times@@(IntegerDigits[#])]] &] (* or *) Flatten[Table[FromDigits/@Tuples[{1, 7}, n], {n, 6}]]
PROG
(Magma) [n: n in [1..24000] | Set(Intseq(n)) subset {1, 7}];
(PARI) is(n) = my(d=digits(n), e=[0, 2, 3, 4, 5, 6, 8, 9]); if(#setintersect(Set(d), Set(e))==0, return(1), return(0)) \\ Felix Fröhlich, Aug 19 2016
(PARI) a(n) = { my(b = binary(n + 1)); b = b[^1]; b = apply(x -> 6*x + 1, b); fromdigits(b) } \\ David A. Corneth, Mar 27 2021
(Python)
def a(n):
b = bin(n+1)[3:]
return int("".join(b.replace("1", "7").replace("0", "1")))
print([a(n) for n in range(1, 47)]) # Michael S. Branicky, Mar 27 2021
CROSSREFS
KEYWORD
nonn,easy,base
AUTHOR
Vincenzo Librandi, Aug 19 2016
STATUS
approved