login
A276039
Numbers using only digits 1 and 7.
12
1, 7, 11, 17, 71, 77, 111, 117, 171, 177, 711, 717, 771, 777, 1111, 1117, 1171, 1177, 1711, 1717, 1771, 1777, 7111, 7117, 7171, 7177, 7711, 7717, 7771, 7777, 11111, 11117, 11171, 11177, 11711, 11717, 11771, 11777, 17111, 17117, 17171, 17177, 17711, 17717, 17771, 17777
OFFSET
1,2
COMMENTS
Numbers k such that the product of digits of k is a power of 7.
There are no prime terms whose number of digits is divisible by 3: for every d that is a multiple of 3, every d-digit number j consisting of no digits other than 1's and 7's will have a digit sum divisible by 3, so j will also be divisible by 3. - Mikk Heidemaa, Mar 27 2021
LINKS
EXAMPLE
7717 is in the sequence because 7*7*1*7 = 343 = 7^3.
MATHEMATICA
Select[Range[20000], IntegerQ[Log[7, Times@@(IntegerDigits[#])]] &] (* or *) Flatten[Table[FromDigits/@Tuples[{1, 7}, n], {n, 6}]]
PROG
(Magma) [n: n in [1..24000] | Set(Intseq(n)) subset {1, 7}];
(PARI) is(n) = my(d=digits(n), e=[0, 2, 3, 4, 5, 6, 8, 9]); if(#setintersect(Set(d), Set(e))==0, return(1), return(0)) \\ Felix Fröhlich, Aug 19 2016
(PARI) a(n) = { my(b = binary(n + 1)); b = b[^1]; b = apply(x -> 6*x + 1, b); fromdigits(b) } \\ David A. Corneth, Mar 27 2021
(Python)
def a(n):
b = bin(n+1)[3:]
return int("".join(b.replace("1", "7").replace("0", "1")))
print([a(n) for n in range(1, 47)]) # Michael S. Branicky, Mar 27 2021
CROSSREFS
Cf. similar sequences listed in A276037.
Sequence in context: A094104 A167513 A260891 * A199327 A260892 A020455
KEYWORD
nonn,easy,base
AUTHOR
Vincenzo Librandi, Aug 19 2016
STATUS
approved