login
A275518
Number of simplices in corner-cut triangulation of the n-cube.
6
1, 2, 5, 16, 67, 364, 2445, 19296, 173015, 1728604, 19011049, 228124384, 2965598547, 41518338684, 622774990133, 9964399645504, 169394793547567, 3049106282938684, 57933019373868897, 1158660387473183616, 24331868136927943019, 535301099012395872028
OFFSET
1,2
COMMENTS
This corrects the value of a(10) in A239911 published by Sallee in Discr. Math. 40. The correct value is for example given by Lee.
LINKS
Carl W. Lee, Triangulating the d-cube, Annals of the New York Academy of Sciences 440 (1985): 205-211.
John F. Sallee, A note on minimal triangulations of an n-cube, Discrete Appl. Math. 4 (1982), no. 3, 211-215. MR0675850 (84g:52019)
John F. Sallee, The middle-cut triangulations of the n-cube, SIAM J. Algebraic Discrete Methods 5 (1984), no. 3, 407-419. MR0752044 (86c:05054). See Table 2.
John F. Sallee, A triangulation of the n-cube, Discrete Math. 40 (1982), no. 1, 81-86. MR0676714 (84d:05065b)
FORMULA
a(n) = 1 + 2^(n-1) - n! + n!*Sum_{i=1..n} (2^(i-1)-1)/i!. - Andrew Howroyd, Sep 06 2023, after Maple program
MAPLE
p := proc(d, x)
add( x^i/i!, i=0..d) ;
end proc:
A275518 := proc(d)
d!*(p(d, 2)/2-p(d, 1))+2^(d-1)-d!/2+1 ;
end proc:
seq(A275518(d), d=1..18) ;
MATHEMATICA
p[d_, x_] := Sum[x^i/i!, {i, 0, d}];
A275518[d_] := d!*(p[d, 2]/2 - p[d, 1]) + 2^(d - 1) - d!/2 + 1;
Table[A275518[d], {d, 1, 18}] (* Jean-François Alcover, Sep 06 2023, after Maple program *)
PROG
(PARI) a(n) = 1 + 2^(n-1) - n! + n!*sum(i=1, n, (2^(i-1)-1)/i!) \\ Andrew Howroyd, Sep 06 2023
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jul 31 2016
EXTENSIONS
Terms a(19) and beyond from Andrew Howroyd, Sep 06 2023
STATUS
approved