login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275510
Triangle read by rows, T(n,k) = floor(n/k) - 2*floor(n/(2*k)), for n>=2 and 2<=k<=n; additionally T(1,2) = 0.
1
0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1
OFFSET
1
FORMULA
Let cp(n) denote the cyclotomic polynomials then Product_{k=2..n} cp(k)^T(n, k) = q-factorial(n) / q-factorial(floor(n/2))^2 (cf. A274888).
EXAMPLE
The triangle starts:
[ n] [T(n,k),k=2,3,4,...] [row sum]
[ 1] [0] 0
[ 2] [1] 1
[ 3] [1, 1] 2
[ 4] [0, 1, 1] 2
[ 5] [0, 1, 1, 1] 3
[ 6] [1, 0, 1, 1, 1] 4
[ 7] [1, 0, 1, 1, 1, 1] 5
[ 8] [0, 0, 0, 1, 1, 1, 1] 4
[ 9] [0, 1, 0, 1, 1, 1, 1, 1] 6
[10] [1, 1, 0, 0, 1, 1, 1, 1, 1] 7
[11] [1, 1, 0, 0, 1, 1, 1, 1, 1, 1] 8
[12] [0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1] 7
[13] [0, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1] 8
[14] [1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1] 9
CROSSREFS
Cf. A274888, A275495 (row sums).
Sequence in context: A189723 A095770 A285972 * A286055 A140318 A060584
KEYWORD
nonn,tabf
AUTHOR
Peter Luschny, Jul 31 2016
STATUS
approved