login
A060584
Compare ultimate and penultimate digits of n base 3, i.e., 0 if n mod 3 = floor(n/3) mod 3, 1 otherwise; also 0 if (n mod 9) is a multiple of 4, 1 otherwise.
1
0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 1
OFFSET
0,1
FORMULA
a(n) = a(n-9) = A060585(n) mod 2.
G.f.: x(1+x+x^2)(1+x^4)/(1-x^9).
a(n) = signum((n mod 9) mod 4). - Alois P. Heinz, Jul 14 2024
MATHEMATICA
PadRight[{}, 120, {0, 1, 1, 1, 0, 1, 1, 1, 0}] (* Harvey P. Dale, Feb 12 2022 *)
CROSSREFS
Sequence in context: A275510 A286055 A140318 * A098725 A284939 A188260
KEYWORD
base,easy,nonn
AUTHOR
Henry Bottomley, Apr 04 2001
STATUS
approved