This site is supported by donations to The OEIS Foundation.

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A275437 Triangle read by rows: T(n,k) is the number of 01-avoiding binary words of length n having degree of asymmetry equal to k (n >= 0; 0 <= k <= floor(n/2)). 4
 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The degree of asymmetry of a finite sequence of numbers is defined to be the number of pairs of symmetrically positioned distinct entries. Example: the degree of asymmetry of (2,7,6,4,5,7,3) is 2, counting the pairs (2,3) and (6,5). A sequence is palindromic if and only if its degree of asymmetry is 0. Number of entries in row n is 1 + floor(n/2). Sum of entries in row n is n+1. Sum(k*T(n,k), k>=0) = A002620(n). LINKS Michael De Vlieger, Table of n, a(n) for n = 0..9999 (rows 0 <= n <= 199). FORMULA T(2k,k)=1 (k >= 0); T(n,k)=2 if k <= floor(n/2); T(n,k)=0 if k > floor(n/2). G.f.:  G(t,z) = (1 + z)/((1 - z)(1 - tz^2)). EXAMPLE Row 4 is [2,2,1] because the 01-avoiding binary words of length 4 are 0000, 1000, 1100, 1110, and 1111, having asymmetry degrees 0, 1, 2, 1, and 0, respectively. Triangle starts:   1;   2;   2, 1;   2, 2;   2, 2, 1;   2, 2, 2. MAPLE T:= proc(n, k) if n = 2*k then 1 elif k <= floor((1/2)*n) then 2 else 0 end if end proc: for n from 0 to 20 do seq(T(n, j), j=0..floor((1/2)*n)) end do; # yields sequence in triangular form MATHEMATICA Table[BinCounts[#, {0, Floor[n/2] + 1, 1}] &@ Map[Total@ BitXor[Take[#, Ceiling[Length[#]/2]], Reverse@ Take[#, -Ceiling[Length[#]/2]]] &, Select[PadLeft[IntegerDigits[#, 2], n] & /@ Range[0, 2^n - 1], Length@ SequenceCases[#, {0, 1}] == 0 &]], {n, 0, 15}] // Flatten (* Michael De Vlieger, Aug 15 2016, Version 10.1 *) Table[If[k == n/2, 1, 2], {n, 15}, {k, Floor[n/2]}] (* Michael De Vlieger, Nov 05 2017 *) CROSSREFS Cf. A002620, A169695. Sequence in context: A224030 A233136 A106054 * A169695 A173642 A234305 Adjacent sequences:  A275434 A275435 A275436 * A275438 A275439 A275440 KEYWORD nonn,easy,tabf,changed AUTHOR Emeric Deutsch, Aug 15 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 16 06:59 EST 2019. Contains 319188 sequences. (Running on oeis4.)