login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A275341 Positions of ones in A275737. 6
1, 2, 3, 5, 6, 8, 11, 13, 15, 18, 20, 23, 25, 28, 30, 33, 37, 39, 42, 46, 49, 52, 55, 58, 61, 64, 68, 71, 74, 78, 82, 85, 89, 92, 95, 99, 103, 107, 110, 114, 118, 121, 126, 129, 133, 137, 140, 144, 148, 153, 156, 160, 165, 168, 172, 176, 180, 184, 189, 193, 197 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
a(n) appears to be asymptotic to log((n+1)!). The question at MathOverflow discusses a related but more complicated sequence.
LINKS
Jinyuan Wang, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
FORMULA
a(n) is the positions of ones in round(im(zetazero(n + 1))/(2*Pi)) - round(im(zetazero(n))/(2*Pi)), where n starts at 1.
EXAMPLE
The sequence A275737: round(im(zetazero(n + 1))/(2*Pi)) - round(im(zetazero(n))/(2*Pi)) where n=1,2,3,4,5, starts:
1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,...
The positions of ones in that sequence are a(n):
1, 2, 3, 5, 6, 8, 11, 13, 15, 18, 20, 23, 25, 28, 30,...
Compare this to round(log((n+1)!)) A046654:
1, 2, 3, 5, 7, 9, 11, 13, 15, 18, 20, 23, 25, 28, 31,...
MATHEMATICA
Flatten[Position[Differences[Round[Im[ZetaZero[Range[135]]]/(2*Pi)]], 1]]
CROSSREFS
Sequence in context: A294911 A179799 A247588 * A191884 A291693 A266542
KEYWORD
nonn
AUTHOR
Mats Granvik, Jul 28 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 15:41 EDT 2024. Contains 373503 sequences. (Running on oeis4.)