Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #69 Dec 20 2024 02:37:58
%S 60,120,440,168,264,840,2448,528,1904,624,1360,2295,816,1632,20128,
%T 1824,48300,3105,15392,2208,13024,2400,10656,4080,8288,2784,5920,2976,
%U 3552,9120,243600,11840,28560,7104,124352,13120,115776,7872,107200,8256,98624,15040,685608
%N a(n) is the smallest number which has a water-capacity of n.
%C Define the water-capacity of a number as follows: If n has the prime factorization p1^e1*p2^e2*...*pk^ek let ci be a column of height pi^ei and width 1. Juxtaposing the ci leads to a bar graph which figuratively can be filled by water from the top. The water-capacity of a number is the maximum number of cells which can be filled with water.
%H Michael De Vlieger, <a href="/A275339/b275339.txt">Table of n, a(n) for n = 1..250</a>
%H Aubrey Blecher, Charlotte Brennan, and Arnold Knopfmacher, <a href="https://hosted.math.rochester.edu/ojac/vol13/161.pdf">The water capacity of integer compositions</a>, Online Journal of Analytic Combinatorics, Issue 13, 2018, #6.
%H Guy L. Steele, <a href="https://www.youtube.com/watch?v=ftcIcn8AmSY&t=514s">Four Solutions to a Trivial Problem</a>, Google Tech Talk 12/1/2015.
%F Let n = p_1^e_1...p_k^e^k be the canonical prime factorization of n and F = [p_1^e_1, ..., p_k^e^k]. Let L denote the max-accumulation of F and R denote the reverse of the max-accumulation of the reversed F. Then the water-capacity of n is Sum_{j=1..k} (min(L(j), R(j)) - F(j)). (See the Sage implementation.) - _Peter Luschny_, Dec 18 2024
%e For example 48300 has the prime factorization 2^2*3*5^2*7*23. The bar graph below has to be rotated counterclockwise for 90 degree.
%e 2^2 ****
%e 3 ***W
%e 5^2 *************************
%e 7 *******WWWWWWWWWWWWWWWW
%e 23 ***********************
%e 48300 is the smallest number which has a water-capacity of 17.
%p water_capacity := proc(N) option remember; local x,k,n,left,right,wc;
%p x := [seq(f[1]^f[2], f = op(2,ifactors(N)))]; n := nops(x);
%p if n = 0 then return 0 fi; left := [seq(0,i=1..n)]; left[1] := x[1];
%p for k from 2 to n do left[k] := max(left[k-1],x[k]) od;
%p right := [seq(0,i=1..n)]; right[n] := x[n];
%p for k from n-1 by -1 to 1 do right[k] := max(right[k+1],x[k]) od;
%p wc := 0; for k from 1 to n do wc := wc + min(left[k], right[k]) - x[k] od;
%p wc end:
%p a := proc(n, search_limit) local j;
%p for j from 1 to search_limit do if water_capacity(j) = n then return j fi od:
%p return 0; end: seq(a(n,50000), n=1..30);
%t w[k_] := With[{fi = Power @@@ FactorInteger[k]}, (fi //. {a___, b_, c__, d_, e___} /; AllTrue[{c}, # < b && # < d &] :> {a, b, Sequence @@ Table[ Min[b, d], {Length[{c}]}], d, e}) - fi // Total];
%t a[n_] := For[k = 1, True, k++, If[w[k] == n, Return[k]]];
%t Array[a, 30] (* _Jean-François Alcover_, Jul 21 2019 *)
%o (Python)
%o from functools import cache
%o from sympy import factorint
%o @cache
%o def WaterCapacity(N: int) -> int:
%o if N < 2: return 0
%o x: list[int] = [p**e for p, e in factorint(N).items()]
%o n = len(x); wc = 0
%o left = [0] * n; left[0] = x[0]
%o right = [0] * n; right[n-1] = x[n-1]
%o for k in range(n): left[k] = max(left[k - 1], x[k])
%o for k in range(n - 2, -1, -1): right[k] = max(right[k + 1], x[k])
%o for k in range(n): wc += min(left[k], right[k]) - x[k]
%o return wc
%o def a(n: int) -> int:
%o j = 1
%o while True:
%o if WaterCapacity(j) == n: return j
%o j += 1
%o print([a(n) for n in range(1, 20)]) # _Peter Luschny_, Dec 16 2024
%o (SageMath)
%o from functools import cache
%o from itertools import count, accumulate as y
%o from operator import sub
%o @cache
%o def c(n):
%o F = [f[0]^f[1] for f in list(factor(n))]
%o A = lambda k: list(y(F[::k], max))[::k]
%o return sum(map(sub, map(min, zip(A(1), A(-1))), F))
%o a = lambda n: next((x for x in count(1) if c(x) == n))
%o print([a(n) for n in range(1, 20)]) # _Peter Luschny_, Dec 18 2024
%K nonn,look,changed
%O 1,1
%A _Peter Luschny_, Aug 03 2016