login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A274994 Primes p such that p^2 divides Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1). 1
3, 1093, 3511, 9511, 13691 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Any prime p divides Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1). But a restricted list of primes p are such that p^2 divides Sum_{k=1..(p-1)/2}(k^(p-2))*(k^(p-1)-1).
Also primes p such that (2^(p-1)-1)/p == 0 (mod p) or 2*((p-1)!+1)/p +(2^(p-1)-1)/p == 0 (mod p), because it can be shown that Sum_{k=1..(p-1)/2} (k^(p-2))*(k^(p-1)-1) == p*((2^(p-1)-1)/p)*(2*((p-1)!+1)/p +(2^(p-1)-1)/p) (mod p^2).
The Wieferich primes (A001220) belong to the sequence.
No more terms up to 2000000, because A280300 has no more terms up to 2000000, and A001220 has no other terms below 4.97*10^17 (see the comments in these sequences). - René Gy, Jan 01 2017
LINKS
Amir Akbary and Sahar Siavashi, The Largest Known Wieferich Numbers, INTEGERS, 18(2018), A3. See Table 1 p. 5.
MATHEMATICA
p=3; While[p<20000, If[Mod[Sum[PowerMod[k, p-2, p^2]*(PowerMod[k, p-1, p^2]-1), {k, 1, (p-1)/2}], p^2] == 0, Print [p]]; p=NextPrime[p]]
PROG
(PARI) is(n)=if(!isprime(n), return(0)); my(m=n^2, e=n-2); sum(k=1, n\2, Mod(k, m)^e*(Mod(k, m)^(e+1)-1))==0 && n>2 \\ Charles R Greathouse IV, Nov 13 2016
CROSSREFS
Equals the union of A001220 and A280300.
Sequence in context: A065604 A062612 A096082 * A178195 A199236 A171360
KEYWORD
nonn,more
AUTHOR
René Gy, Nov 11 2016
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 19 15:34 EDT 2024. Contains 371794 sequences. (Running on oeis4.)