login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274967
Odd composite numbers n which are not m-gonal number for 3 <= m < n.
4
77, 119, 143, 161, 187, 203, 209, 221, 299, 319, 323, 329, 371, 377, 391, 407, 413, 437, 473, 493, 497, 517, 527, 533, 539, 551, 581, 583, 589, 611, 623, 629, 649, 667, 689, 707, 713, 731, 737, 749, 767, 779, 791, 799, 803, 817, 851, 869, 893, 899, 901, 913
OFFSET
1,1
COMMENTS
An m-gonal number, m >= 3, i.e. of form n = (k/2)*[(m-2)*k - (m-4)], yields a nontrivial factorization of n if and only if of order k >= 3.
Odd composite numbers n for which A176948(n) = n.
All odd composite n are coprime to 30 (see next comment) and have smallest prime factor >= 7, e.g.
77 = 7·11, 119 = 7·17, 143 = 11·13, 161 = 7·23,
187 = 11·17, 203 = 7·29, 209 = 11·19, 221 = 13·17,
299 = 13·23, 319 = 11·29, 323 = 17·19, 329 = 7·47,
371 = 7·53, 377 = 13·29, 391 = 17·23, 407 = 11·37,
413 = 7·59, 437 = 19·23, 473 = 11·43, 493 = 17·29,
497 = 7·71, 517 = 11·47, 527 = 17·31, 533 = 13·41,
539 = 7·7·11, 551 = 19·29, 581 = 7·83, 583 = 11·53,
589 = 19·31, 611 = 13·47, 623 = 7·89, 629 = 17·37,
649 = 11·59, 667 = 23·29, 689 = 13·53, 707 = 7·101,
713 = 23·31, 731 = 17·43, 737 = 11·67, 749 = 7·107,
767 = 13·59, 779 = 19·41, 791 = 7·113, 799 = 17·47,
803 = 11·73, 817 = 19·43, 851 = 23·37, 869 = 11·79,
893 = 19·47, 899 = 29·31, 901 = 17·53, 913 = 11·83.
Composite numbers n which are divisible by 3 are m-gonal numbers of order 3, with m = (n + 3)/3. Thus all a(n) are coprime to 3.
Odd composite numbers n which are divisible by 5 are m-gonal numbers of order 5, with m = (n + 15)/10. Thus all a(n) are coprime to 5.
Since we are looking for solutions of (m-2)*k^2 - (m-4)*k - 2*n = 0, with m >= 3 and k >= 3, the largest k we need to consider is
k = {(m-4) + sqrt[(m-4)^2 + 8*(m-2)*n]}/[2*(m-2)] with m = 3, thus
k <= (1/2)*{-1 + sqrt[1 + 8*n]}.
Or, since we are looking for solutions of 2n = m*k*(k-1) - 2*k*(k-2), with m >= 3 and k >= 3, the largest m we need to consider is
m = [2n + 2*k*(k-2)]/[k*(k-1)] with k = 3, thus m <= (n+3)/3.
EXAMPLE
77 is in this sequence because 77 is trivially a 77-gonal number of order k = 2, but not an m-gonal number for 3 <= k <= (1/2)*{-1 + sqrt[1 + 8*77]}.
MATHEMATICA
Select[Range[500]2+1, ! PrimeQ[#] && FindInstance[n*(4 + n*(s-2)-s)/2 == # && s >= 3 && n >= 3, {s, n}, Integers] == {} &] (* Giovanni Resta, Jul 13 2016 *)
PROG
(Sage)
def is_a(n):
if is_even(n): return False
if is_prime(n): return False
for m in (3..(n+3)//3):
if pari('ispolygonal')(n, m):
return False
return True
print([n for n in (3..913) if is_a(n)]) # Peter Luschny, Jul 28 2016
(Python)
from sympy import isprime
A274967_list = []
for n in range(3, 10**6, 2):
if not isprime(n):
k = 3
while k*(k+1) <= 2*n:
if not (2*(k*(k-2)+n)) % (k*(k - 1)):
break
k += 1
else:
A274967_list.append(n) # Chai Wah Wu, Jul 28 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Daniel Forgues, Jul 12 2016
EXTENSIONS
a(10)-a(52) from Giovanni Resta, Jul 13 2016
STATUS
approved