login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274912
Square array read by antidiagonals upwards in which each new term is the least nonnegative integer distinct from its neighbors.
5
0, 1, 2, 0, 3, 0, 1, 2, 1, 2, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 3, 0, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2
OFFSET
0,3
COMMENTS
In the square array we have that:
Antidiagonal sums give A168237.
Odd-indexed rows give A010673.
Even-indexed rows give A010684.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed antidiagonals give the initial terms of A010674.
Even-indexed antidiagonals give the initial terms of A000034.
Main diagonal gives A010674.
This is also a triangle read by rows in which each new term is the least nonnegative integer distinct from its neighbors.
In the triangle we have that:
Row sums give A168237.
Odd-indexed columns give A000035.
Even-indexed columns give A010693.
Odd-indexed diagonals give A010673.
Even-indexed diagonals give A010684.
Odd-indexed rows give the initial terms of A010674.
Even-indexed rows give the initial terms of A000034.
Odd-indexed antidiagonals give the initial terms of A010673.
Even-indexed antidiagonals give the initial terms of A010684.
FORMULA
a(n) = A274913(n) - 1.
From Robert Israel, Nov 14 2016: (Start)
G.f.: 3*x/(1-x^2) - Sum_{k>=0} (2*x^(2*k^2+3*k+1)-x^(2*k^2+5*k+3))/(1+x).
G.f. as triangle: x*(1+2*y+3*x*y)/((1-x^2*y^2)*(1-x^2)). (End)
EXAMPLE
The corner of the square array begins:
0, 2, 0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, 3, 1, ...
0, 2, 0, 2, 0, 2, ...
1, 3, 1, 3, 1, ...
0, 2, 0, 2, ...
1, 3, 1, ...
0, 2, ...
1, ...
...
The sequence written as a triangle begins:
0;
1, 2;
0, 3, 0;
1, 2, 1, 2;
0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2;
0, 3, 0, 3, 0, 3, 0, 3, 0;
1, 2, 1, 2, 1, 2, 1, 2, 1, 2;
...
MAPLE
ListTools:-Flatten([seq([[0, 3]$i, 0, [1, 2]$(i+1)], i=0..10)]); # Robert Israel, Nov 14 2016
MATHEMATICA
Table[Boole@ EvenQ@ # + 2 Boole@ EvenQ@ k &[n - k + 1], {n, 14}, {k, n}] // Flatten (* Michael De Vlieger, Nov 14 2016 *)
KEYWORD
nonn,tabl
AUTHOR
Omar E. Pol, Jul 11 2016
STATUS
approved