login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274827
Numerator of the n-th partial sum of the reciprocals of the successive prime gaps.
2
1, 3, 2, 9, 11, 3, 7, 15, 47, 53, 55, 29, 16, 67, 23, 71, 77, 79, 41, 22, 15, 31, 95, 193, 199, 211, 217, 229, 235, 1657, 1699, 1727, 1811, 9139, 9559, 3233, 9839, 10049, 10189, 3443, 3583, 3611, 3751, 3821, 3961, 11953, 12023, 12233, 12653, 12863, 13003
OFFSET
1,2
LINKS
FORMULA
a(n) = Numerator(Sum_{i=1..n} 1/(prime(i+1)-prime(i))).
a(n) = Numerator(Sum_{i=1..n} 1/A001223(i)).
MAPLE
Primes:= select(isprime, [2, seq(i, i=3..10^4, 2)]):
map(numer, ListTools:-PartialSums(map(`^`, Primes[2..-1]-Primes[1..-2], -1))); # Robert Israel, Jul 26 2016
MATHEMATICA
nmax=51; Table[Sum[1/(Prime[j + 1] - Prime[j]), {j, 1, n}], {n, 1, nmax}]//Numerator;
Accumulate[1/Differences[Prime[Range[60]]]]//Numerator (* Harvey P. Dale, Dec 25 2017 *)
PROG
(PARI) a(n) = numerator(sum(i=1, n, 1/(prime(i+1)-prime(i)))) \\ Felix Fröhlich, Jul 07 2016
CROSSREFS
KEYWORD
nonn,frac,look
AUTHOR
Andres Cicuttin, Jul 07 2016
STATUS
approved